Unique Binary Search Trees,Unique Binary Search Trees2 生成二叉排序树
Unique Binary Search Trees:求生成二叉排序树的个数。
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
算法分析:类似上阶梯,简单的动态规划问题。当根节点为i时,比i小的节点有i-1个,比i大的节点有n-i个,所以,i为根节点能够生成二叉排序树的个数是
nums[n] += nums[i-1]*nums[n-i],i从1到n。
public class UniqueBinarySearchTrees
{
public int numTrees(int n)
{
if(n <= 0)
{
return 0;
}
int[] res = new int[n+1];
res[0] = 1;
res[1] = 1;
for(int i = 2; i <= n; i ++)
{
for(int j = 1; j <= i; j ++)//j为根节点
{
res[i] += res[j-1]*res[i-j];
}
}
return res[n];
}
}
Unique Binary Search Trees2:求生成二叉排序树的根节点的集合
Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1...n.
For example,
Given n = 3, your program should return all 5 unique BST's shown below.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
算法分析:这个不是求个数,而是求生成树根节点。使用递归。
public class UniqueBinarySearchTreesII
{
public List<TreeNode> generateTrees(int n)
{
if(n <= 0)
{
return new ArrayList<TreeNode>();
} return helper(1, n);
} public List<TreeNode> helper(int m, int n)
{
List<TreeNode> res = new ArrayList<>();
if(m > n)
{
res.add(null);
return res;
} for(int i = m; i <= n; i ++)
{
//i为根节点
List<TreeNode> ls = helper(m, i-1);//i节点的左子树
List<TreeNode> rs = helper(i+1, n);//i节点的右子树
for(TreeNode l : ls)
{
for(TreeNode r : rs)
{
TreeNode curr = new TreeNode(i);
curr.left = l;
curr.right = r;
res.add(curr);
}
}
}
return res;
}
}
Unique Binary Search Trees,Unique Binary Search Trees2 生成二叉排序树的更多相关文章
- 41. Unique Binary Search Trees && Unique Binary Search Trees II
Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) that st ...
- Unique Binary Search Trees,Unique Binary Search Trees II
Unique Binary Search Trees Total Accepted: 69271 Total Submissions: 191174 Difficulty: Medium Given ...
- Leetcode:Unique Binary Search Trees & Unique Binary Search Trees II
Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) that st ...
- LeetCode之“动态规划”:Unique Binary Search Trees && Unique Binary Search Trees II
1. Unique Binary Search Trees 题目链接 题目要求: Given n, how many structurally unique BST's (binary search ...
- 将百分制转换为5分制的算法 Binary Search Tree ordered binary tree sorted binary tree Huffman Tree
1.二叉搜索树:去一个陌生的城市问路到目的地: for each node, all elements in its left subtree are less-or-equal to the nod ...
- [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- [LeetCode] Unique Binary Search Trees II 独一无二的二叉搜索树之二
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...
- 2 Unique Binary Search Trees II_Leetcode
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...
- 【leetcode】Unique Binary Search Trees (#96)
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
随机推荐
- opencv亚像素级角点检测
一般角点检测: harris cv::cornerHarris() shi-tomasi cv::goodFeaturesToTrack() 亚像素级角点检测是在一般角点检测基础之上将检测出的角点精确 ...
- POJ1330Nearest Common Ancestors最近公共祖先LCA问题
用的离线算法Tarjan 该算法的详细解释请戳 http://www.cnblogs.com/Findxiaoxun/p/3428516.html 做这个题的时候,直接把1470的代码copy过来,改 ...
- Number Sequence---hdu1711(kmp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1711 题意就是求b数组在a数组出现的位置:就是kmp模板: #include<stdio.h&g ...
- mysql设置远程访问之后 远程访问非常缓慢 解决办法!
在mysql配置文件的 选项下添加设置. [mysqld] skip-name-resolve skip-name-resolve
- Flask之flask-migrate
简介 flask-migrate是flask的一个扩展模块,主要是扩展数据库表结构的. 官方文档:http://flask-migrate.readthedocs.io/en/latest/ 使用fl ...
- spring 拾遗
1.@PostConstruct VS init-method 1.1 both BeanPostProcessor 1.2 @PostConstruct is a JSR-250 annotati ...
- Mybatis框架学习总结-表的关联查询
一对一关联 创建表和数据:创建一张教师表和班级表,这里假设一个老师只负责教一个班,那么老师和班级之间的关系就是一种一对一的关系. CREATE TABLE teacher( t_id INT PRIM ...
- PAT 1093 Count PAT's[比较]
1093 Count PAT's (25 分) The string APPAPT contains two PAT's as substrings. The first one is formed ...
- Code signing is required for product type 'Application' in SDK 'iOS 11.2'
在打包的时候出现这样一个错误,Code signing is required for product type 'Application' in SDK 'iOS 11.2' ,就是说代码签名证书 ...
- dubbo-admin 部署
上一章主要是谈到zookeeper的安装和部署 因为zookeeper只是一个黑框,我们无法看到是否存在了什么提供者或消费者,这时就要借助Dubbo-Admin管理平台来实时的查看,也可以通过这个平台 ...