51nod 1244 莫比乌斯函数之和


莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出。梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号。具体定义如下:
如果一个数包含平方因子,那么miu(n) = 0。例如:miu(4), miu(12), miu(18) = 0。
如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n) = (-1)^k。例如:miu(2), miu(3), miu(30) = -1,miu(1), miu(6), miu(10) = 1。
给出一个区间[a,b],S(a,b) = miu(a) + miu(a + 1) + … miu(b)。
例如:S(3, 10) = miu(3) + miu(4) + miu(5) + miu(6) + miu(7) + miu(8) + miu(9) + miu(10)
= -1 + 0 + -1 + 1 + -1 + 0 + 0 + 1 = -1。

Input

输入包括两个数a, b,中间用空格分隔(2 <= a <= b <= 10^10)

Output

输出S(a, b)。

Input示例

3 10

Output示例

-1


杜教筛板子,佬下午讲了我就写一写

考虑令h=μ∗I
显然h=∑d∣nμ(d)∗I(nd)=[n=1]

现在求一下h的前缀和sumh(n)=∑i=1nh(i)=1

那么同时我们考虑sumh(n)=∑i=1n∑d∣nμ(d)∗I(nd)

sumh(n)=∑i=1n∑d∣nμ(d)

sumh(n)=∑d=1n∑i=1⌊nd⌋μ(d)

sumh(n)=∑d=1n∑i=1n[i≤⌊nd⌋]μ(d)

sumh(n)=∑i=1n∑d=1n[d≤⌊ni⌋]μ(d)

sumh(n)=∑i=1n∑d=1⌊ni⌋μ(d)

sumh(n)=∑d=1nμ(d)+∑i=2n∑d=1⌊ni⌋μ(d)

令p(n)=∑d=1μ(d)

可以得到sumh(n)=1=p(n)+∑i=2np(⌊ni⌋)

然后就可以得到最后的式子p(n)=1−∑i=2np(⌊ni⌋)

至于杜教筛的复杂度我就不说了

然后这题需要预处理一部分的前缀和来优化,然后就可以了


然后因为我很懒,就不想写hash table,然后就map代替了
问题不大


 #include<bits/stdc++.h>
using namespace std;
#define N 5000010
#define LL long long
map<LL,LL> mp;
LL mu[N],pri[N],vis[N],tot=;
void init(){
mu[]=;
for(int i=;i<N;i++){
if(!vis[i])pri[++tot]=i,mu[i]=-;
for(int j=;j<=tot&&pri[j]*i<N;j++){
vis[i*pri[j]]=;
if(i%pri[j]==)mu[i*pri[j]]=;
else mu[i*pri[j]]=-mu[i];
}
}
for(int i=;i<N;i++)mu[i]+=mu[i-];
}
LL Mertens(LL n){
if(n<N)return mu[n];
if(mp[n])return mp[n];
LL ans=,j=;
for(LL i=;i<=n;i=j+){
j=n/(n/i);
ans-=(j-i+)*Mertens(n/i);
}
return mp[n]=ans;
}
int main(){
init();
LL l,r;scanf("%lld%lld",&l,&r);
printf("%lld",Mertens(r)-Mertens(l-));
return ;
}

51nod 1244 莫比乌斯函数之和 【杜教筛】的更多相关文章

  1. 51Nod.1244.莫比乌斯函数之和(杜教筛)

    题目链接 map: //杜教筛 #include<map> #include<cstdio> typedef long long LL; const int N=5e6; in ...

  2. 51 NOD 1244 莫比乌斯函数之和(杜教筛)

    1244 莫比乌斯函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens) ...

  3. 【51nod-1239&1244】欧拉函数之和&莫比乌斯函数之和 杜教筛

    题目链接: 1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 1244:http://www.51nod. ...

  4. 51nod1244 莫比乌斯函数之和 杜教筛

    虽然都写了,过也过了,还是觉得杜教筛的复杂度好玄学 设f*g=h,∑f=S, 则∑h=∑f(i)S(n/i下取整) 把i=1时单独拿出来,得到 S(n)=(∑h-∑2->n f(i)S(n/i下 ...

  5. [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)

    [51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...

  6. 51nod 1244 莫比乌斯函数之和

    题目链接:51nod 1244 莫比乌斯函数之和 题解参考syh学长的博客:http://www.cnblogs.com/AOQNRMGYXLMV/p/4932537.html %%% 关于这一类求积 ...

  7. 51nod 1244 莫比乌斯函数之和(杜教筛)

    [题目链接] http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 [题目大意] 计算莫比乌斯函数的区段和 [题解] 利 ...

  8. [51Nod 1237] 最大公约数之和 (杜教筛+莫比乌斯反演)

    题目描述 求∑i=1n∑j=1n(i,j) mod (1e9+7)n<=1010\sum_{i=1}^n\sum_{j=1}^n(i,j)~mod~(1e9+7)\\n<=10^{10}i ...

  9. 【51nod】1239 欧拉函数之和 杜教筛

    [题意]给定n,求Σφ(i),n<=10^10. [算法]杜教筛 [题解] 定义$s(n)=\sum_{i=1}^{n}\varphi(i)$ 杜教筛$\sum_{i=1}^{n}(\varph ...

随机推荐

  1. 修改windows命令行字体

    YaHei Consolas Hybrid

  2. javascript闭包和立即执行函数的作用

    一.闭包——closure 先看一个闭包的例子.我们想实现一个计数器,最简单的方法就是定义一个全局变量,计数的时候将其加1.但是全局变量有风险,哪里都有可能不小心改掉它.那局部变量呢, 它只在函数内部 ...

  3. JAVA8 HashMap 源码阅读

    序 阅读java源码可能是每一个java程序员的必修课,只有知其所以然,才能更好的使用java,写出更优美的程序,阅读java源码也为我们后面阅读java框架的源码打下了基础.阅读源代码其实就像再看一 ...

  4. Java程序员怎么迈向架构师

    怎样学习才能从一名Java初级程序员成长为一名合格的架构师,或者说一名合格的架构师应该有怎样的技术知识体系,这是不仅一个刚刚踏入职场的初级程序员也是工作三五年之后开始迷茫的老程序员经常会问到的问题. ...

  5. 解决:make:cc 命令未找到的解决方法

    安装Redis的时候报这个错误 原因:未安装gcc 解决方法:安装gcc 自动安装,包括依赖库[root@VM_220_111_centos redis-3.2.9]# yum -y install ...

  6. unity屏幕坐标转世界坐标结果为(0,0,0)

    代码: wv转出来一直为(0,0,0),卡了好久,问别人说要转化的屏幕坐标Z不能为0 阿西吧!特此记录

  7. HDU 4696 Answers (脑补+数形结合)

    题意 给一个图,每个点的出度为1,每个点的权值为1或者2.给Q个询问,问是否能找到一条路径的权值和M. 思路 由于每个点的出度为1,所以必然存在环.又因为c[i]只能取1或者2,可以组成任意值,所以只 ...

  8. Ubuntu 安装GNU Scientific library(GSL)

    注: 此系列为自己之前所搭建网站内容. 由于论文数据处理的需要,需要使用libeemd这个包,需要安装gsl科学库,windows下没有办法,只能转战ubuntu进行科学计算. GSL(GNU Sci ...

  9. 转:HDFS运行原理

    简介 HDFS(Hadoop Distributed File System )Hadoop分布式文件系统.是根据google发表的论文翻版的.论文为GFS(Google File System)Go ...

  10. 3.spring cloud eureka 高可用

    1.目的 防止某一台服务器宕机 通常通过多台EUREKA来为客户端进行注册,客户也进行注册 2.开启三台EUREKA 三天EUREKA分别对应端口 8761 8762 8763 配置文件如下 EURE ...