There are some locations in a park, and some of them are connected by roads. The park manger needs to build some railways along the roads, and he would like to arrange tourist routes to each circuit. If a railway belongs to more than one tourist routes, there might be clash on it, and if a railway belongs to none tourist route, it doesn’t need to build. 
Now we know the plan, and can you tell us how many railways are no need to build and how many railways where clash might happen.

InputThe Input consists of multiple test cases. The first line of each test case contains two integers, n (0 < n <= 10000), m (0 <= m <= 100000), which are the number of locations and the number of the railways. The next m lines, each line contains two integers, u, v (0 <= u, v < n), which means the manger plans to build a railway on the road between u and v. 
You can assume that there is no loop and no multiple edges. 
The last test case is followed by two zeros on a single line, which means the end of the input.OutputOutput the number of railways that are no need to build, and the number of railways where clash might happen. Please follow the format as the sample.Sample Input

8 10
0 1
1 2
2 3
3 0
3 4
4 5
5 6
6 7
7 4
5 7
0 0

Sample Output

1 5

过了一周再来总结这几道题,为什么这道题是每条边访问后就退栈stk[top--],而“warm up”是访问完所以边再退栈。是因为此题不缩点,只是取值,所以不必等访问完所有边再退栈。相反,1-2-4组成一个环,1-3-5组成一个环,点相联通的情况下1-2-4-3-5都应该再这个缩点里,访问完一条边就退栈会导致1-2-4和3-5不在一个缩点里。

比如HDU2242不需要缩点,可以遇到一割边就处理。而HDU4612就必须访问完相连的割边再缩点。

又过了一周,再总结:

   点的双连通存桥(边),每访问一条边操作一次。 

            边的双连通存割点(点),访问完所有边后操作。

尚有疑惑

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<cstring>
using namespace std;
const int maxn=;
const int maxm=;
int Laxt[maxn],Next[maxm],To[maxm],cnt,vis[maxn];
int dfn[maxn],low[maxn];
int times,ans,cute_cnt,n,m;
int q[maxn],q_cnt,scc[maxn],scc_cnt;
int stk[maxn],top;
void _init()
{
memset(Laxt,,sizeof(Laxt));
memset(dfn,,sizeof(dfn));
memset(scc,,sizeof(scc));
memset(vis,,sizeof(vis));
ans=cute_cnt=top=scc_cnt=cnt=times=;
}
void _add(int u,int v)
{
Next[++cnt]=Laxt[u];
Laxt[u]=cnt;
To[cnt]=v;
}
void _count()//找环
{
int e=;
for(int i=;i<=q_cnt;i++)
for(int j=Laxt[q[i]];j;j=Next[j])
if(scc[To[j]]==scc[q[i]]) e++;
e/=;
if(e>q_cnt) ans+=e;
}
void _tarjan(int u,int v){
dfn[u]=low[u]=++times;
int num_v=;
stk[++top]=u;
for(int i=Laxt[u];i;i=Next[i]){
if(To[i]==v) continue;//此题无重边
if(!dfn[To[i]]){
_tarjan(To[i],u);
if(low[u]>low[To[i]]) low[u]=low[To[i]];
if(low[To[i]]>dfn[u]) cute_cnt++;//割边
if(dfn[u]<=low[To[i]]){//小于是个环,等于是个点,都要处理
q_cnt=;//环内的点
scc_cnt++;
for(;;){
int tmp=stk[top--];
scc[tmp]=scc_cnt;
q[++q_cnt]=tmp;
if(tmp==To[i]) break;
}
scc[u]=scc_cnt;
q[++q_cnt]=u;
_count();
}
}
else if(dfn[To[i]]<low[u]) low[u]=dfn[To[i]];
}
}
int main()
{
int i,j,k,u,v;
while(~scanf("%d%d",&n,&m)){
if(n==&&m==) return ;
_init();
while(m--){
scanf("%d%d",&u,&v);
u++;v++;
_add(u,v);
_add(v,u);
}
for(i=;i<=n;i++)
if(!dfn[i]) _tarjan(i,-);
printf("%d %d\n",cute_cnt,ans);
}
return ;
}

HDU3394Railway Tarjan连通算法的更多相关文章

  1. HDU-2586-How far away(LCA Tarjan离线算法)

    链接:https://vjudge.net/problem/HDU-2586 题意: 勇气小镇是一个有着n个房屋的小镇,为什么把它叫做勇气小镇呢,这个故事就要从勇气小镇成立的那天说起了,修建小镇的时候 ...

  2. LCA问题的ST,tarjan离线算法解法

    一  ST算法与LCA 介绍 第一次算法笔记这样的东西,以前学算法只是笔上画画写写,理解了下,刷几道题,其实都没深入理解,以后遇到新的算法要把自己的理解想法写下来,方便日后回顾嘛>=< R ...

  3. LCA最近公共祖先(Tarjan离线算法)

    这篇博客对Tarjan算法的原理和过程模拟的很详细. 转载大佬的博客https://www.cnblogs.com/JVxie/p/4854719.html 第二次更新,之前转载的博客虽然胜在详细,但 ...

  4. LCA(最近公共祖先)--tarjan离线算法 hdu 2586

    HDU 2586 How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  5. 最近公共祖先LCA Tarjan 离线算法

    [简介] 解决LCA问题的Tarjan算法利用并查集在一次DFS(深度优先遍历)中完成所有询问.换句话说,要所有询问都读入后才开始计算,所以是一种离线的算法. [原理] 先来看这样一个性质:当两个节点 ...

  6. tarjan图论算法

    tarjan图论算法 标签: tarjan 图论 模板 洛谷P3387 [模板]缩点 算法:Tarjan有向图强连通分量+缩点+DAGdp 代码: #include <cstdio> #i ...

  7. LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现

    首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点. 换句话说,就是两个点在这棵 ...

  8. 半连通分量--Tarjan/Kosaraju算法

    一个有向图称为半连通(Semi-Connected),满足:对于图中任两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. 若满足,则称G’是G的一个导出子图. 若G’是G的导出子图,且G’半 ...

  9. Tarjan系列算法总结(hdu 1827,4612,4587,4005)

    tarjan一直是我看了头大的问题,省选之前还是得好好系统的学习一下.我按照不同的算法在hdu上选题练习了一下,至少还是有了初步的认识.tarjan嘛,就是维护一个dfsnum[]和一个low[],在 ...

随机推荐

  1. 2018 ICPC北京 H ac自动机

    n=40的01串,求有多少m=40的01串中包含它,包含的定义是存在子串有至多一个字符不相同 600组n=15的数据 15组n=40的数据,所以我们只能支持n^5的算法. 陷入两个比较有意思的坑: 1 ...

  2. tp5---树形菜单

    composer require bluem/tree

  3. ubuntu16.04 安装以及要做的事情

    1.安装ubuntu 选择安装时更新,以及MP3.图形等:然后选择分区(ext4)(安装时需先进入虚拟系统连上网,输入清华net账号),分区情况按照下图来,swap为临时用的内存分区,可以不要: 选择 ...

  4. Oracle Solaris 11.4 GA 版发布,这将是 Solaris 的绝唱

    美国当地时间8月28日,Oracle 正式宣布推出 Oracle Solaris 11.4 GA 稳定版,距离上个版本 11.3 的发布已过去近三年.Oracle 的产品管理总监 Scott Lynn ...

  5. Kali之aircrack-ng

    本机装好设备及驱动 电脑本机装好Realtek RTL8187 Wireless驱动连接好USB无线驱动 把设备转接给虚拟机 win+R,启动VMware USB Arbitration Servic ...

  6. 代码题 — 剑指offer题目、总结

    剑指offer题目总结:  https://www.cnblogs.com/dingxiaoqiang/category/1117681.html 版权归作者所有,任何形式转载请联系作者.作者:马孔多 ...

  7. 13.LockSupport工具

    1. LockSupport简介 在之前介绍AQS的底层实现,已经在介绍java中的Lock时,比如ReentrantLock,ReentReadWriteLocks,已经在介绍线程间等待/通知机制使 ...

  8. sqlserver数据库标注为可疑的解决办法

    前几天客户那边的服务器死机了,然后客户强制关机,重新启动服务器后,系统就没法正常使用,连接不上服务器,我远程操作后,看到数据库标注为可疑,由于客户之前没备份数据库,看来只能是修复了: 1:停止数据库服 ...

  9. leetcode 849. Maximize Distance to Closest Person

    In a row of seats, 1 represents a person sitting in that seat, and 0 represents that the seat is emp ...

  10. jersey实现跨服务器上传

    1.导入跨服务器上传文件jar文件 <dependency> <groupId>commons-io</groupId> <artifactId>com ...