Minimum Palindromic Factorization(最少回文串分割)

以下内容大部分(可以说除了关于回文树的部分)来自论文A Subquadratic Algorithm for Minimum Palindromic Factorization

问题描述

给出一个字符串\(S\),将\(S\)划分为\(k\)个连续的字符串,使得每一个都是回文串,问\(k\)的最小值。

简单做法

直接做法就是\(O(n^2)\)的\(dp\),设\(PL[i]\)表示\(S[1..i]\)划分的最小值,集合\(P_i\)表示以\(i\)为结尾的回文串的开头位置。那么

\[PL[j]=min_{i} \begin{Bmatrix} PL[i-1]+1 : i \in P_j \end{Bmatrix}
\]

而\(P_j\)可以由\(P_{j-1}\)推导出。总的时间复杂度为\(O(n^2)\).

更快的方法

如果\(P_j\)可以用另一个集合\(G_j\)代替,而\(G_j\)的大小只有\(O(logj)\),而且在\(O(logj)\)时间内就可以从\(G_{j-1}\)推导至\(G_j\),那么就有一个\(O(nlogn)\)的方法了。

定义1:对于一个字符串\(x\),如果\(y\)既是\(x\)的前缀,也是\(x\)的后缀,则\(y\)称为\(x\)的一个边界,如果\(y \neq x\),则\(y\)是一个真边界。

引理1:假设\(y\)是回文串\(x\)的一个后缀,则\(y\)是\(x\)的一个边界当且仅当\(y\)是一个回文串。

证明:

显然。

引理2:假设\(y\)是\(x\)的一个边界,且\(|x| \leq 2|y|\),则\(x\)是一个回文串当且仅当\(y\)是回文串。

证明:

(Figure 1)

(其中\(u^R\)表示\(u\)的翻转)

定义2:假设一个字符串\(x\),如果存在一个长度为\(p(p \leq |x|)\)的字符串\(\omega\),满足\(x\)是\(\omega^{\infty}\)(无穷个\(\omega\)连接在一起)的一个字串,则\(p\)称为\(x\)的一个阶段。

显然,\(y\)是\(x\)的一个真边界当且仅当\(|x|-|y|\)是\(x\)的一个阶段,一并考虑引理1,能得出引理3

引理3:设\(y\)是回文串\(x\)的一个真后缀,则\(|x|-|y|\)是\(x\)的一个阶段当且仅当\(y\)是回文串。特别地,\(|x|-|y|\)是\(x\)最小的阶段当且仅当\(y\)是\(x\)的最长的回文真后缀。

引理4:假设\(x\)是一个回文串,\(y\)是\(x\)的最长回文真后缀,\(z\)是\(y\)的最长回文真后缀,令\(x=uy, y=vz\),则

  1. \(|u| \geq |v|\)
  2. 若\(|u| > |v|\),则\(|u| > |z|\)
  3. 若\(|u| = |v|\),则\(u = v\)

证明

  1. 由引理\(3\)得,\(|u|=|x|-|y|\)是\(x\)的最小阶段,\(|v|=|y|-|z|\)是\(y\)的最小阶段。因为\(y\)是\(x\)的子串,所以\(|u| > |y| > |v|\)或\(|u|\)也是\(y\)的一个阶段。前一个结论容易理解。当\(|u| \leq |y|\)时,由Figure 1可知重叠部分为回文串,且为\(y\)的真后缀,由引理\(3\)可知\(|u|\)是一个阶段。
  2. 由引理\(1\)得,\(y\)是\(x\)的边界,\(v\)是\(x\)的前缀,设\(x=v\omega\),则\(z\)是\(\omega\)的边界且\(|\omega|=|zu|(\because x=uvz=vzu)\),因假设\(|u|>|v|\),所以\(|\omega|>|y|\)。反证法:假设\(|u| \leq |z|\),则\(|\omega|=|zu| \leq 2|z|\),有引理\(2\)得\(\omega\)是回文串,与\(y\)为\(x\)的最长回文真后缀矛盾,得证。
  3. 由2可知\(v\)是\(x\)的前缀,所以若\(|u|=|v|\),则\(u=v\)。

利用上述引理可以得出关于\(P_j\)的一些特性,假设\(P_j=\begin{Bmatrix} p_1, p_2, ..., p_m \end{Bmatrix}, p_1<p_2<\cdots<p_m\)。\(p_i-p_{i-1}\)称为间隔。

引理5:\(P_j\)的间隔序列是不递增的,而且最多有\(O(logj)\)个不同的间隔。

证明

\(\forall i \in [2..m-1]\)(\(m\)为\(P_j\)的大小),设\(x=S[p_{i-1}..j], y=S[p_i..j], z=S[p_{i+1}..j]\),根据引理4,有间隔\(|u|,|v|\)。根据引理4的结论1,间隔序列是不递增的。若\(|u|>|v|\),由引理4结论2得\(|x|>|u|+|z|>2|z|\),即回文后缀的长度会在两步内变成一半,所以最多有\(O(logj)\)个不同的间隔。

将\(P_j\)按间隔分成\(O(logj)\)个连续的子集,每个集合的间隔相等,即设\(P_{j, \Delta}=\begin{Bmatrix} p_i: 1 < i <m, p_i-p_{i-1}=\Delta \end{Bmatrix}, P_{j, \infty}=\begin{Bmatrix} p_1 \end{Bmatrix}\)。每一个\(P_{j, \Delta}\)用一个三元组表示\((min P_{j, \Delta}, \Delta, |P_{j, \Delta}|)\)。设\(G_j\)为一个链表,以\(\Delta\)递减的顺序存在这些三元组。

\(G_j\)的大小最大为\(O(logj)\),接下来会讲如何在\(O(|G_{j-1}|)\)时间内将\(G_{j-1}\)转移至\(G_j\)。在平方的算法中,需要对\(P_{j-1}\)的每个元素判断是去掉还是替换为减一。以下的引理可证明这一决策对\(P_{j-1, \Delta}\)能同时操作。

引理6:设\(p_i\)和\(p_{i+1}\)是\(P_{j-1, \Delta}\)的两个连续的元素,则\(p_i-1 \in P_j\)当且仅当\(p_{i+1}-1 \in P_j\)

证明

根据定义,\(p_{i+1}-p_i=\Delta\),而且\(p_{i-1}=p_i-\Delta\)。根据引理4结论3,\(S[p_i-1]=S[p_{i+1}-1]=c\),所以\(p_i-1 \in P_j\)当且仅当\(S[j]=c\),即当且仅当\(p_{i+1}-1 \in P_j\)。

所以每个三元组\((i, \Delta, k) \in G_{j-1}\)或是去掉或是用\((i-1, \Delta, k)\)。即

\[G'_j=\begin{Bmatrix} (i-1, \Delta, k):(i, \Delta, k) \in G_{j-1}, i>1, and S[i-1]=S[j] \end{Bmatrix}
\]

但是\(G'_j\)可能不满足定义,因为某些间隔改变了。准确的说,当\(P_{j-1, \Delta}\)的最小元素\(p_i\)替换成了\(p_i-1\),但\(p_{i-1}=p_i-\Delta\)被去掉了(因为\(p_{i-1}\)不符合引理4结论3,有可能\(S[p_{i-1}-1] \neq S[j]\)),则\(p_i-1\)不再属于\(P_{j, \Delta}\)。这时需要把\(p_i-1\)单独拆分,即将\((p_i-1, \Delta, k)\)分成\((p_i-1, \Delta', 1)\)和\((p_i-1+\Delta, \Delta, k-1)\)(如果\(k>1\)),其中\(\Delta'\)为新的间隔。在这过程中还需要合并相同间隔的三元组。(详细可看最后的代码)

引理7:\(G_j\)能在\(O(|G_{j-1}|)=O(logj)\)时间内从\(G_{j-1}\)推导出。

接下来说明如何在\(O(|G_j|)\)的时间内,利用\(PL[j-1], G_j\)推导出\(PL[j]\)。

引理8:若\((i, \Delta, k) \in G_j, k \geq 2)\),则\((i, \Delta, k-1) \in G_{j-\Delta}\)

证明

根据定义,\((i, \Delta, k) \in G_j\)等价于\(P_{j, \Delta}=\begin{Bmatrix} i, i+\Delta, ..., i+(k-1)\Delta \end{Bmatrix}\),现需要证明\(P_{j-\Delta, \Delta}=\begin{Bmatrix} i, i+\Delta, ..., i+(k-2)\Delta \end{Bmatrix}\)。现在先证明\(P_{j-\Delta, \Delta} \cap [i-\Delta+1..j-\Delta]=\begin{Bmatrix} i, i+\Delta, ..., i+(k-2)\Delta \end{Bmatrix}\),而且\(P_{j-\Delta, \Delta} \cap [1..i-\Delta]=\varnothing\)

因为\(y=S[i..j], x=S[i-\Delta..j]\)(根据\(\Delta\)的定义)都是回文串,而且\(y\)是\(x\)最长的真边界,\(S[i-\Delta..j-\Delta]=y=S[i..j]\)。所以对于\(\forall l \in [i..j], l \in P_j\)当且仅当\(l-\Delta \in P_{j-\Delta}\)。特别地,因为间隔相同,所以\(\forall l \in [i+1..j], l \in P_{j, \Delta}\)当且仅当\(l-\Delta \in P_{j-\Delta, \Delta}\)。所以\(P_{j-\Delta, \Delta} \cap [i-\Delta+1..j-\Delta]=\begin{Bmatrix} i, i+\Delta, ..., i+(k-2)\Delta \end{Bmatrix}\)。

现在还需证明\(P_{j-\Delta, \Delta} \cap [1..i-\Delta]=\varnothing\)。这为真当且仅当\(i-2\Delta \notin P_{j-\Delta}\)。反证法:\(S[i-2\Delta..j-\Delta]\)是回文串,设\(\omega=S[i-2\Delta..i-\Delta-1]\),则\(S[j-2\Delta+1..j-\Delta]=\omega^R\)。因为\(z=S[i-\Delta..j-\Delta]\)和\(S[i-\Delta..j]\)都是回文串,所以\(S[i-\Delta..i-1]=\omega, S[j-\Delta+1..j]=\omega^R\)。因为\(z\)是回文串,所以\(S[i-2\Delta..j]=\omega z \omega^R\)也是回文串,所以\(i-2\Delta \in P_j, i-\Delta \in P_{j, \Delta}\),矛盾,得证。而且\(i-2\Delta \notin P_{j-\Delta}\)一定成立,若\(i-2\Delta in P_{j-\Delta}\),则\(P_{j-Delta, \Delta}\)的最小元素不是\(i\)。

所以\(P_{j, \Delta}=P_{j-\Delta, \Delta} \cup max P_{j, \Delta}\)(当\(|P_{j, \Delta} \geq 2\))。这样\(PL_{j, \Delta}=min{PL[i-1]+1 : i \in P_{j, \Delta}}\)就能利用\(PL_{j-\Delta, \Delta}\)在常数时间内得出。

设\(GPL[i]\),\(GPL[m=min(P_{j, \Delta}-\Delta]=PL_{j, \Delta}\),注意到\(PL_{j-\Delta, \Delta}\)也是存在\(m\)这个位置(若\(|P_{j, \Delta} \geq 2\))。以下引理证明位置\(m\)在\((j-\Delta..j)\)不会被其它数重写。

引理9:设\(m=min(P_{j, \Delta}-\Delta), \forall l \in [j-\Delta+1..j-1], m \notin P_l\)

证明

反证法:假设\(m \in P_l, l \in [j-\Delta+1..j-1]\),则\(S[m..l]\)是回文串,则\(S[m+h..l-h], h=l-j+\Delta\)也是回文串。因为\(l-h=j-\Delta, m<m+h<m+\Delta=min(P_{j-\Delta, \Delta})\),所以\(m+h\)才是\(min(P_{j-\Delta, \Delta})\)在\(P_{j-\Delta}\)中的前一个,\(min(P_{j-\Delta, \Delta}) \notin P_{j-\Delta, \Delta}\),矛盾,得证。

定理:将一个长度为\(n\)的字符串分解成最少回文串可以在时间复杂度为\(O(nlogn)\),空间复杂度为\(O(n)\)下算出。

/*
tripe{nid, delta, sum}(开头位置, 间隔, 个数)
*/
memset(PL, 0x7f, sizeof PL);
memset(GPL, 0x7f, sizeof GPL);
PL[0]=0;
vtri G;
G.clear();
for (int j=1; j<=n; ++j)
{
vtri h;
h.clear();
int r=-j; //前者结尾位置
for (auto &i : G)
if (i.nid>1 && st[i.nid-1]==st[j])
{
int nid=i.nid-1;
if (nid-r!=i.delta) //间隔不同
{
//拆分
h.push_back(tripe{nid, nid-r, 1});
if (i.sum>1)
h.push_back(tripe{nid+i.delta, i.delta, i.sum-1});
}
else h.push_back(tripe{nid, i.delta, i.sum}); //间隔相同
r=nid+(i.sum-1)*i.delta; //更新前者结尾位置
} if (j>1 && st[j-1]==st[j]) //长度为2的回文串
{
h.push_back(tripe{j-1, j-1-r, 1});
r=j-1;
}
h.push_back(tripe{j, j-r, 1}); //长度为2的回文串
G.clear(); //合并相同间隔的三元组
G.push_back(*h.begin());
for (vtri::iterator it=h.begin()+1; it!=h.end(); ++it)
if (G.back().delta==(*it).delta) G.back().sum+=(*it).sum;
else G.push_back(*it); PL[j]=j;
for (auto &i:G)
{
int r=i.nid+(i.sum-1)*i.delta;
int m=PL[r-1]+1;
if (i.sum>1) m=min(m, GPL[i.nid-i.delta]);
if (i.delta<=i.nid) GPL[i.nid-i.delta]=m;
PL[j]=m;
}
}
}

与回文树的结合

回文树可以维护以某个点为结尾的回文串,而且回文树中的\(fail[i]\)指向的是长度仅次于\(i\)的回文串的回文串。也就是说沿着\(fail\)走到\(root\)得到的路径就是以\(i\)为结尾的回文串,而且设\(diff\)为路径中相邻两个点的\(len\)的差,则\(diff\)就是间隔序列,而且这个间隔序列是满足上述的性质的,所以可以另外设一个数组\(anc\)来维护\(i.nid\)(同一个\(\Delta\)的开头位置)的位置,时间复杂度也是\(O(nlogn)\)。

void init() //回文树初始化
{
S[0]=-1;
m=0; //字符串长度
total=1; //回文树点数
last=0; //最后插入的点
len[0]=0; //回文串长度
len[1]=-1;
fail[0]=fail[1]=1;
}
void insert(int ch)
{
S[++m]=ch;
int cur=last;
while (S[m-len[cur]-1]!=S[m]) cur=fail[cur];
if (!son[cur][ch])
{
len[++total]=len[cur]+2;
int tmp=fail[cur];
while (S[m-len[tmp]-1]!=S[m]) tmp=fail[tmp];
tmp=son[tmp][ch];
fail[total]=tmp; son[cur][ch]=total;
diff[total]=len[total]-len[tmp]; //间隔序列
anc[total]=(diff[total]==diff[tmp]? anc[tmp]:tmp); //开头位置
}
last=son[cur][ch];
}
void solve()
{
init();
for (int i=1; i<=n; ++i) ans[i]=inf;
for (int i=1; i<=n; ++i)
{
insert(a[i]);
for (int j=last; j; j=anc[j])
{
hd[j]=i-len[anc[j]]-diff[j]; //GPL存放位置
if (anc[j]!=fail[j] && ans[hd[fail[j]]]<ans[hd[j]])
hd[j]=hd[fail[j]];
if (!(i & 1) && ans[hd[j]]+1<ans[i]) ans[i]=ans[hd[j]]+1;
}
}
}

Minimum Palindromic Factorization(最少回文串分割)的更多相关文章

  1. 动态规划——H 最少回文串

    We say a sequence of characters is a palindrome if it is the same written forwards and backwards. Fo ...

  2. 51Nod - 1154 回文串划分(最少回文串dp)

    回文串划分 有一个字符串S,求S最少可以被划分为多少个回文串. 例如:abbaabaa,有多种划分方式.   a|bb|aabaa - 3 个回文串 a|bb|a|aba|a - 5 个回文串 a|b ...

  3. 1027A. Palindromic Twist#变形回文串

    题目内容:http://codeforces.com/contest/1027/problem/A 题目解析:输入T组字符串,每个字符串都必须改变一次,每个字母改变的规则是变成相邻的字母,字母a只能变 ...

  4. lintcode:Palindrome Partitioning 分割回文串

    题目: 分割回文串 给定一个字符串s,将s分割成一些子串,使每个子串都是回文串. 返回s所有可能的回文串分割方案. 样例 给出 s = "aab",返回 [ ["aa&q ...

  5. 分割回文串 · Palindrome Partitioning

    [抄题]: 给定一个字符串s,将s分割成一些子串,使每个子串都是回文串. 返回s所有可能的回文串分割方案. 给出 s = "aab",返回 [ ["aa", & ...

  6. lintcode-136-分割回文串

    136-分割回文串 给定一个字符串s,将s分割成一些子串,使每个子串都是回文串. 返回s所有可能的回文串分割方案. 样例 给出 s = "aab",返回 [ ["aa&q ...

  7. [Swift]LeetCode132. 分割回文串 II | Palindrome Partitioning II

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  8. 分割回文串 II · Palindrome Partitioning II

    [抄题]: 给定一个字符串s,将s分割成一些子串,使每个子串都是回文. 返回s符合要求的的最少分割次数. [思维问题]: 不知道要用预处理字符串降低复杂度 [一句话思路]: 先把预处理获得s中回文串的 ...

  9. Palindrome Partitioning LightOJ - 1044(回文串最小分割数,O(n^2)预处理子串是否回文)

    题意:将一个字符串分割成最少的字符串,使得分割出的每个字符串都是回文串.输出最小的分割数. 方法(自己的):先O(n^2)(用某个点或某个空区间开始,每次向左右扩展各一个的方法)处理出所有子串是否回文 ...

随机推荐

  1. 【loj6038】「雅礼集训 2017 Day5」远行 树的直径+并查集+LCT

    题目描述 给你 $n$ 个点,支持 $m$ 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林:询问一个点能到达的最远的点与该点的距离.强制在线. $n\le 3\times 10^5$ ,$ ...

  2. A Magic Lamp HDU - 3183(RMQ返回下标)

    原文地址:https://blog.csdn.net/acdreamers/article/details/8692384 题意: 对于一个序列A[1...N],一共N个数,除去M个数使剩下的数组成的 ...

  3. QT uic rcc moc 命令行使用

    QT uic rcc moc 命令行使用 PS C:\Users\lsgx> uic.exe --help Usage: C:\Qt\Qt5.5.1\5.5\msvc2012\bin\uic.e ...

  4. 转:pairwise 代码参考

    Learning to rank with scikit-learn: the pairwise transform http://fa.bianp.net/blog/2012/learning-to ...

  5. 【转】Castle.ActiveRecord的嵌套事务处理

    嵌套的情况下,怎么处理Castle.ActiveRecord的事务? 今天试了一下,原来还是很简单的,只需要使用Castle.ActiveRecord.TransactionMode.Inherits ...

  6. 史上最全面,清晰的SharedPreferences解析

    基础用法获取Sp:getput监听器原理分析获取SharedPreferences构造SharedPreferencesgetX原理分析putX原理分析创建editorputStringapplyap ...

  7. 2017-2018-2 20165218 实验四《Android开发基础》实验报告

    实验三 Android开发基础 课程:java程序设计 姓名:赵冰雨 学号:20165218 指导教师:娄嘉鹏 实验日期:2018.4.14 实验内容: 1.基于Android Studio开发简单的 ...

  8. 电子商务(电销)平台中用户模块(User)数据库设计明细

    以下是自己在电子商务系统设计中的订单模块的数据库设计经验总结,而今发表出来一起分享,如有不当,欢迎跟帖讨论~ 用户基础表(user_base)|-- 自动编号 (user_id)|-- 用户名 (us ...

  9. 【DP】【CF9D】 How many trees?

    传送门 Description 给你两个正整数\(n,h\),求由\(n\)个点组成的高度大于等于\(h\)的二叉树有多少个 Input 一行两个整数\(n,h\) Output 一个整数代表答案. ...

  10. Hibernate持久化对象修改id重新保存的办法

    Hibernate持久化对象修改id重新保存的办法——Hibernate学习记录二 2017年11月10日 20:16:48 筱光 阅读数:1122   版权声明:本文为博主原创文章,未经博主允许不得 ...