[CF126D]Fibonacci Sums/[BJOI2012]最多的方案
[CF126D]Fibonacci Sums/[BJOI2012]最多的方案
题目大意:
将\(n(n\le10^9)\)表示成若干个不同斐波那契数之和的形式,求方案数。
思路:
如果不考虑\(0\),则\(10^9\)以内的斐波那契数只有86个。
首先求出字典序最大的方案,考虑分裂里面的数。
用\(c_i\)表示字典序最大方案在斐波那契数列中的下标(递增),\(f_{i,j}\)表示考虑到第\(i\)个数,本身是否分裂的方案数。
转移方程为:
f_{i,1}=\lfloor\frac{c_i-c_{i-1}-1}2\rfloor f_{i-1,0}+\lfloor\frac{c_i-c_{i-1}}2\rfloor f_{i-1,1}
\]
单次询问时间复杂度\(\mathcal O(86)\)。
源代码:
#include<cstdio>
#include<cctype>
#include<algorithm>
typedef long long int64;
inline int64 getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int64 x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
int64 f[87][2],c[87],fib[87]={
0,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,1771\
1,28657,46368,75025,121393,196418,317811,514229,832040,1346269,2178309,3524578,5\
702887,9227465,14930352,24157817,39088169,63245986,102334155,165580141,267914296\
,433494437,701408733,1134903170,1836311903,2971215073ll,4807526976ll,7778742049l\
l,12586269025ll,20365011074ll,32951280099ll,53316291173ll,86267571272ll,13958386\
2445ll,225851433717ll,365435296162ll,591286729879ll,956722026041ll,1548008755920\
ll,2504730781961ll,4052739537881ll,6557470319842ll,10610209857723ll,171676801775\
65ll,27777890035288ll,44945570212853ll,72723460248141ll,117669030460994ll,190392\
490709135ll,308061521170129ll,498454011879264ll,806515533049393ll,13049695449286\
57ll,2111485077978050ll,3416454622906707ll,5527939700884757ll,8944394323791464ll\
,14472334024676221ll,23416728348467685ll,37889062373143906ll,61305790721611591ll\
,99194853094755497ll,160500643816367088ll,259695496911122585ll,42019614072748967\
3ll,679891637638612258ll
};
int main() {
for(register int T=getint();T;T--) {
int64 n=getint();
int cnt=0;
for(register int p=std::lower_bound(&fib[1],&fib[87],n)-fib;p;p--) {
if(n>=fib[p]) {
n-=fib[p];
c[++cnt]=p;
}
}
std::reverse(&c[1],&c[cnt]+1);
f[1][0]=1;
f[1][1]=(c[1]-1)/2;
for(register int i=2;i<=cnt;i++) {
f[i][0]=f[i-1][0]+f[i-1][1];
f[i][1]=f[i-1][0]*((c[i]-c[i-1]-1)/2)+f[i-1][1]*((c[i]-c[i-1])/2);
}
printf("%lld\n",f[cnt][0]+f[cnt][1]);
}
return 0;
}
[CF126D]Fibonacci Sums/[BJOI2012]最多的方案的更多相关文章
- BJOI2012 最多的方案
BJOI2012 最多的方案 Description 第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数 ...
- [BJOI2012]最多的方案(记忆化搜索)
第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数.现在给一个正整数N,它可以写成一些斐波那契数的和的形式. ...
- [luogu4133 BJOI2012] 最多的方案 (计数dp)
题目描述 第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数.现在给一个正整数N,它可以写成一些斐波那契数的 ...
- BZOJ.2660.[BJOI2012]最多的方案(DP)
题目链接 首先我们知道: 也很好理解.如果相邻两项出现在斐波那契表示法中,那它们显然可以合并. 所以我们能得到\(n\)的斐波那契表示,记\(pos[i]\)为\(n\)的斐波那契表示法中,第\(i\ ...
- 洛谷 [BJOI2012]最多的方案
洛谷 这题是旁边同学介绍的,听他说记忆化搜索可以过... 不过我还是老老实实的想\(dp\)吧- 先看看数据范围,\(n\leq10^{18}\)相当于\(n \leq fib[86]\). 以前打\ ...
- 洛谷P4133 [BJOI2012]最多的方案(记忆化搜索)
题意 题目链接 求出把$n$分解为斐波那契数的方案数,方案两两不同的定义是分解出来的数不完全相同 Sol 这种题,直接爆搜啊... 打表后不难发现$<=1e18$的fib数只有88个 最先想到的 ...
- bzoj2660: [Beijing wc2012]最多的方案
题目链接 bzoj2660: [Beijing wc2012]最多的方案 题解 对于一个数的斐波那契数列分解,他的最少项分解是唯一的 我们在拆分成的相临两项之间分解后者,这样形成的方案是最优且不重的 ...
- bzoj2660最多的方案
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2660 当然可以看出 选了第 i 个斐波那契数<=>选了第 i - 1 和第 i ...
- CF(D. Fibonacci Sums)dp计数
题目链接:http://codeforces.com/contest/126/problem/D 题意:一个数能够有多种由互不同样的斐波那契数组成的情况: 解法:dp,easy证明:每一个数通过贪心能 ...
随机推荐
- F - Debate CodeForces - 1070F 思维
题目链接:https://vjudge.net/problem/CodeForces-1070F 具体思路:首先把所有的00放进去,然后对于10 和01 的取两个数目最小值t,排完序后将前t个加起来, ...
- 深入理解Spring系列之十:DispatcherServlet请求分发源码分析
转载 https://mp.weixin.qq.com/s/-kEjAeQFBYIGb0zRpST4UQ DispatcherServlet是SpringMVC的核心分发器,它实现了请求分发,是处理请 ...
- 五. Jmeter--HTTP Cookie Manager
1. 添加HTTP Cookie Manager 2.添加登录login http,request info 和 HTTP Header Manager 中的信息是从fiddler中拿的, 至于hea ...
- php-fpm性能优化
PHP-fpm PHP-FPM是一个PHPFastCGI管理器,是只用于php的. php-fpm 已经在 Linux.MacOSX.Solaris 和 FreeBSD 上测试通过. 确信 libxm ...
- Ubuntu 上更新 Flash 插件
2018-02-19 12:08:28 更新: 现在的 Google Chrome 浏览器自带了 Flash 支持,无需安装.而 Firefox 浏览器没有提供 Flash 支持,所以用 Firefo ...
- 用C#实现对MSSqlServer数据库的增删改查---Server层(WaterLevelRecordServer.cs、DeviceRecordServer.cs)
抛开现实的残酷与无奈,对技术孜孜不倦的追求,从专注到执着,从疯狂到忘我,始终坚信代码可以改变世界,更能改变自己的人生. WaterLevelRecordServer.cs using System; ...
- Linux用户密码期限修改
今天有开发报故,sftp无法登录.检查服务都是正常的,之前3月份也出现过此问题,当时忙没有注意,现在看每3个月出现问题.这才想到是密码过期导致的. 先重置用户密码,发现过期日志为Oct 08, 201 ...
- iTextSharp之pdfRead(两个文件文本内容的比较,指定页数的pdf截取,水印的添加)
using iTextSharp.text; using iTextSharp.text.pdf; using iTextSharp.text.pdf.parser; using System; us ...
- python爬虫多线程编程
#使用了线程库 import threading from queue import Queue from bs4 import BeautifulSoup import json import re ...
- 模板为webpack的目录结构
目录结构 | -- build // 项目构建(webpack)相关代码 | |-- build.js // 生产环境构建代码 | |-- check-version.js // 检查node.npm ...