【题目大意】

给出一个m*n的矩阵里面有一些格子为障碍物,求经过所有非障碍格子的哈密顿回路个数。

【思路】

最典型的插头DP。分为三种情况:

(1)当前格子既没有上插头也没有左插头。

如果下边和右边都没有障碍,新建连同分量。

(2)如果只有左插头或者右插头。

延伸或者拐弯,当然也要判断有没有障碍。

(3)上插头和左插头都没有。

1. 如果两个插头不连通(编号不一样),那么将两个插头所处的连通分量合并,标记相同的连通块标号,O(n)扫描保证最小表示;
2. 如果已经连通,相当于出现了一个回路,这种情况只能出现在最后一个非障碍格子。

由于状态非常多,用hash表存储状态。

decode和encode注意一下,这里不赘述了。

【错误点】

注意一下ch要开得够大,具体见代码。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
const int MAXN=;
const int HASH=;
int ex,ey;
int m,n;
int maze[MAXN][MAXN];
int code[MAXN],ch[MAXN];
struct HashMap
{
vector<int> hash[HASH];//存储f和state的下标
vector<ll> f,state;//存储对应的方案数和状态
void init()
{
for (int i=;i<HASH;i++) vector<int>().swap(hash[i]);
vector<ll>().swap(f);
vector<ll>().swap(state);
}
void push(ll st,ll ans)
{
int h=st%HASH;
for (int i=;i<hash[h].size();i++)
{
int now=hash[h][i];
if (state[now]==st)//如果已经存储了当前状态,直接累加
{
f[now]+=ans;
return;
}
}
//如果没有存储过当前状态,累加
state.push_back(st);
f.push_back(ans);
hash[h].push_back(state.size()-);
}
}dp[]; void decode(ll st)
{
memset(code,,sizeof(code));
for (int i=n;i>=;i--)
{
code[i]=st&;//每三位代表一个信息
st>>=;
}
} ll encode()
//用最小表示法重新编码
{
int cnt=;
memset(ch,-,sizeof(ch));
ch[]=;
long long st=;
for (int i=;i<=n;i++)
{
if (ch[code[i]]==-) ch[code[i]]=cnt++;
code[i]=ch[code[i]];
st<<=;
st|=code[i];
}
return st;
} void shift()
{
for (int i=n;i>;i--) code[i]=code[i-];
code[]=;
} void dpblank(int i,int j,int cur)
{
for (int k=;k<dp[-cur].state.size();k++)
{
decode(dp[-cur].state[k]);
int left=code[j-];//左插头
int up=code[j];//上插头 /*如果上下插头都没有*/
if (!left && !up)
{
if (maze[i][j+] && maze[i+][j])
{
code[j-]=code[j]=MAXN-;
//这里只要随便设置一个大数即可 //【attention】这里千万不可以设置成MAXN,否则ch数组会抱★★★★★★★★ //因为encode会重新用最小表示法编码
dp[cur].push(encode(),dp[-cur].f[k]);
}
} /*只有上插头或者只有左插头*/
if ((left&&(!up))||((!left)&&up))
{ int t=left|up;
if (maze[i][j+])//右边没有障碍
{
code[j-]=;
code[j]=t;
dp[cur].push(encode(),dp[-cur].f[k]);
}
if (maze[i+][j])//下面没有障碍
{
code[j-]=t;
code[j]=;
if (j==n) shift();
dp[cur].push(encode(),dp[-cur].f[k]);
}
} /*上插头和右插头都有*/
if (left && up)
{
if (left==up)
{
if (i==ex && j==ey)
{
code[j-]=code[j]=;
if (j==n) shift();
dp[cur].push(encode(),dp[-cur].f[k]);
}
}
else
{
code[j-]=code[j]=;
for (int t=;t<=n;t++)
if (code[t]==up) code[t]=left;
if (j==n) shift();
dp[cur].push(encode(),dp[-cur].f[k]);
}
}
}
} void dpblock(int i,int j,int cur)
{
int k=;
for (int k=;k<dp[-cur].state.size();k++)
{
decode(dp[-cur].state[k]);
code[j-]=code[j]=;
if (j==n) shift();
dp[cur].push(encode(),dp[-cur].f[k]);
}
} void solve()
{
int cur=;
ll ans=;
dp[cur].init();
dp[cur].push(,);//DP数组初始化
for (int i=;i<=m;i++)
for (int j=;j<=n;j++)
{
cur^=;
dp[cur].init();
if (maze[i][j]) dpblank(i,j,cur);
else dpblock(i,j,cur); }
for (int i=;i<dp[cur].state.size();i++)
ans+=dp[cur].f[i];
printf("%lld",ans);
} void init()
{
memset(maze,,sizeof(maze));
ex=ey=;
for (int i=;i<=m;i++)
{
char str[MAXN];
scanf("%s",str);
for (int j=;j<n;j++)
{
if (str[j]=='.')
{
ex=i;
ey=j+;
maze[i][j+]=;
}
}
}
} int main()
{
while (scanf("%d%d",&m,&n)!=EOF)
{
init();
if (ex==) puts("");//如果没有一个是空格的话直接输出0
else solve();
}
return ;
}

【插头DP】BZOJ1814-Formula的更多相关文章

  1. 【BZOJ1814】Ural 1519 Formula 1 (插头dp)

    [BZOJ1814]Ural 1519 Formula 1 (插头dp) 题面 BZOJ Vjudge 题解 戳这里 上面那个链接里面写的非常好啦. 然后说几个点吧. 首先是关于为什么只需要考虑三进制 ...

  2. 【BZOJ1814】Ural 1519 Formula 1 插头DP

    [BZOJ1814]Ural 1519 Formula 1 题意:一个 m * n 的棋盘,有的格子存在障碍,求经过所有非障碍格子的哈密顿回路个数.(n,m<=12) 题解:插头DP板子题,刷板 ...

  3. bzoj1814 Ural 1519 Formula 1(插头dp模板题)

    1814: Ural 1519 Formula 1 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 924  Solved: 351[Submit][Sta ...

  4. bzoj1814 Ural 1519 Formula 1(插头DP)

    对插头DP的理解还不是很透彻. 先说一下肤浅的理解吧. 插头DP使用范围:指数级复杂度,且适用于解决网格图连通性问题,如哈密顿回路等问题.插头一般指每相邻2个网格的接口. 题目难度:一般不可做. 使用 ...

  5. 插头DP讲解+[BZOJ1814]:Ural 1519 Formula 1(插头DP)

    1.什么是插头$DP$? 插头$DP$是$CDQ$大佬在$2008$年的论文中提出的,是基于状压$D$P的一种更高级的$DP$多用于处理联通问题(路径问题,简单回路问题,多回路问题,广义回路问题,生成 ...

  6. 【Ural】1519. Formula 1 插头DP

    [题目]1519. Formula 1 [题意]给定n*m个方格图,有一些障碍格,求非障碍格的哈密顿回路数量.n,m<=12. [算法]插头DP [题解]<基于连通性状态压缩的动态规划问题 ...

  7. RUAL1519 Formula 1 【插头DP】

    RUAL1519 Formula 1 Background Regardless of the fact, that Vologda could not get rights to hold the ...

  8. URAL 1519 Formula 1(插头DP,入门题)

    Description Background Regardless of the fact, that Vologda could not get rights to hold the Winter ...

  9. URAL1519 Formula 1 —— 插头DP

    题目链接:https://vjudge.net/problem/URAL-1519 1519. Formula 1 Time limit: 1.0 secondMemory limit: 64 MB ...

  10. ural 1519 Formula 1(插头dp)

    1519. Formula 1 @ Timus Online Judge 干了一天啊!!!插头DP入门. 代码如下: #include <cstdio> #include <cstr ...

随机推荐

  1. 2、Web基本介绍及Html语法介绍

    1.1 Web基本介绍 1.web就是world wide web的缩写.称之为全球广域网,俗称www.2.我们可以将web理解为就是当前的一种互联网.对于我们来说更多的就是网站服务.3.网站我们可以 ...

  2. vc 播放音乐

    #include <vfw.h>  #pragma comment(lib,"vfw32.lib")   ● 简单实现      要实现一个播放器,首先要先建立一个MF ...

  3. php遍历路径——php经典实例

    php遍历路径——php经典实例 代码: <html> <head> <title>遍历目录</title> <meta charset=&quo ...

  4. 商城项目(ssm+dubbo+nginx+mysql统合项目)总结(3)

    我不会在这里贴代码和详细步骤什么的,我觉得就算我把它贴出来,你们照着步骤做还是会出很多问题,我推荐你们去看一下黑马的这个视频,我个人感觉很不错,一步一步走下来可以学到很多东西.另外,视频和相关文档的话 ...

  5. 《STL源码剖析》读书笔记

    转载:https://www.cnblogs.com/xiaoyi115/p/3721922.html 直接逼入正题. Standard Template Library简称STL.STL可分为容器( ...

  6. 认识Cookie和状态管理

    HTTP协议是一种无状态的协议,WEB服务器本身不能识别出哪些请求是同一个浏览器发出的 ,浏览器的每一次请求都是完全孤立的 即使 HTTP1.1 支持持续连接,但当用户有一段时间没有提交请求,连接也会 ...

  7. Python编程规范精简版

    用四个空格缩进,不要用tab键:四个空格是在较小缩进(可以允许更大的嵌套深度)和较大缩进(可读性更好)之间的一个很好的折中.制表符会带来混乱,最好不要使用: 包装行保证每行不超过79个字符:这对那些使 ...

  8. HDU 4614 Vases and Flowers(线段树+记录区间始末点或乱搞)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4614 题目大意:有n个空花瓶,有两种操作: 操作①:给出两个数字A,B,表示从第A个花瓶开始插花,插B ...

  9. ISSCC 2017论文导读 Session 14:A 288μW Programmable Deep-Learning Processor with 270KB On-Chip Weight

    A 288μW Programmable Deep-Learning Processor with 270KB On-Chip Weight Storage Using Non-Uniform Mem ...

  10. 【LOJ】#2131. 「NOI2015」寿司晚宴

    题解 怎么NOI2015D1--全是一眼秒的sb题--然后我代码全都写跪一遍= = 要是NOI2015是IOI赛制我就可以AK啦(大雾) 代码能力直线下降,NOI2018滚粗预定了啊TAT 我是不是要 ...