题意:

    一根数轴上有n只怪物,第i个怪物所在的位置为ai,另有m个特殊点,第i个特殊点所在的位置为bi。你可以对怪物进行移动,若两怪物相邻,那么你不能把他们分开,移动时要看作一个整体。你可以选择向左或向右移动,直到撞到怪物,移动的次数不限制。现在要求最大数量的呆在特殊点上的怪物。 n <= 100000,m <= 2000

  分析:

    做这题的时候真的非常烦躁,卡在描述状态很久,静下心来思考才能更好地领悟。

    由于最终答案与特殊点密切相关,且特殊点是固定不变的,我们不妨以特殊点为基础作转移。接下来我们就可以分情况来考虑了:假设第i只怪兽在特殊点j的左边,那么就需要pos[j]-pos[i]只怪兽填充,即第i+1~i+pos[j]-pos[i]向左移动;反之亦然。

    然后我就思考状态,发现无论怎么想,转移都涉及到左移和右移,会出现状态重叠的情况。

    那么就要把左移和右移分开,使转移的时候不出现状态重叠的情况。我们令F[i]为前i只怪兽能到达的特殊点的最大数量,而且还带有限制,对于转移怪兽i的时候,怪兽i只能选择不动或者向左移动。那不是说怪兽可以左右移吗?是的,只是怪兽i的向右移是在怪兽i+1~n的转移中,将左右移分开了。这样F[i]所得到的方案必满足所有的怪兽小于等于第i只怪兽的位置pos[i],避免了状态的重叠,这在后面的转移当中至关重要。

    那么要如何转移呢?

      其实在上面的思考中,已经可以得到答案了。

      对于F[i]的转移,只有两种:不动或者向左移动。转移是基于特殊点的,你的转移都是为了去占满更多的特殊点,分类讨论如何占满。

      1、不动。枚举位置比怪兽i小的特殊点j,若要占据特殊点j,那么就需要i-(pos[i]-pos[j])~i-1的怪兽右移,转移方程即为:F[i] = max{F[i-(pos[i]-pos[j])-1]+1}。当然还需要注意怪兽连成一块的情况。

      2、向左移动。枚举位置特殊点j,以及预处理出位置最大不超过特殊点j的怪兽p。若要占据特殊点j,那么i-p需大于等于pos[j]-pos[p],转移方程即为:F[i] = max{F[p]+1}。这里如果出现连成一块的情况的话,就需要判断第i只怪兽是否在块的最右端,否则,又会出现状态重叠的情况。

 #include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <iostream> using namespace std; const int maxn = ;
const int maxm = ;
int n, m, a[maxn], b[maxm];
int belong[maxn], lef_block[maxn], rig_block[maxn], Bcnt;
int p[maxm], f[maxn]; void in()
{
scanf("%d %d", &n, &m);
for (int i = ; i <= n; ++i)
scanf("%d", &a[i]);
for (int i = ; i <= m; ++i)
scanf("%d", &b[i]);
} void prepare()
{
sort(a+, a+n+);
sort(b+, b+m+);
Bcnt = ;
for (int i = ; i <= n; ++i)
{
if (a[i] != a[i-]+ || i == )
{
belong[i] = ++Bcnt;
lef_block[Bcnt] = i;
}
else
belong[i] = Bcnt;
if (a[i+] != a[i]+)
rig_block[Bcnt] = i;
}
for (int i = ; i <= m; ++i)
{
p[i] = p[i-];
while (a[p[i]+] <= b[i])
p[i] ++;
}
} void dp()
{
f[] = ;
for (int i = ; i <= n; ++i)
{
f[i] = f[i-];
for (int j = ; j <= m; ++j){
if (b[j] <= a[i])
{
//part 1 : i don't move, others rig-move
if (i-(a[i]-b[j]) >= )
{
int t = lef_block[belong[i-(a[i]-b[j])]];
f[i] = max(f[t-]+, f[i]);
}
//part 2 : i lef-move
if (b[j]-a[p[j]] <= i-p[j] && rig_block[belong[i]] == i)
{
f[i] = max(f[p[j]]+, f[i]);
}
}
else
break ;
}
}
printf("%d\n", f[n]);
} void work()
{
prepare();
dp();
} int main()
{
freopen("a.in", "r", stdin);
freopen("a.out", "w", stdout);
in();
work();
return ;
}

某DP题目3的更多相关文章

  1. DP题目列表/弟屁专题

    声明: 1.这份列表不是我原创的,放到这里便于自己浏览和查找题目. ※最近更新:Poj斜率优化题目 1180,2018,3709 列表一:经典题目题号:容易: 1018, 1050, 1083, 10 ...

  2. dp题目列表

    此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...

  3. dp题目

    从别的地方看来,最近一直在啃DP,有个目标,更有动力了. 1.Robberies 连接 :http://acm.hdu.edu.cn/showproblem.php?pid=2955      背包; ...

  4. 插头DP题目泛做(为了对应WYD的课件)

    题目1:BZOJ 1814 URAL 1519 Formula 1 题目大意:给定一个N*M的棋盘,上面有障碍格子.求一个经过所有非障碍格子形成的回路的数量. 插头DP入门题.记录连通分量. #inc ...

  5. 很好的一个dp题目 Codeforces Round #326 (Div. 2) D dp

    http://codeforces.com/contest/588/problem/D 感觉吧,这道题让我做,我应该是不会做的... 题目大意:给出n,L,K.表示数组的长度为n,数组b的长度为L,定 ...

  6. 两道很好的dp题目【4.29考试】

    A 问题描述: 对于一个排列,考虑相邻的两个元素,如果后面一个比前面一个大,表示这个位置是上升的,用I表示,反之这个位置是下降的,用D表示.如排列3,1,2,7,4,6,5可以表示为DIIDID. 现 ...

  7. 题目1453:Greedy Tino(dp题目)

    题目链接:http://ac.jobdu.com/problem.php?pid=1453 详解链接:https://github.com/zpfbuaa/JobduInCPlusPlus 参考代码: ...

  8. 题目1452:搬寝室(dp题目)

    题目链接:http://ac.jobdu.com/problem.php?pid=1452 详解链接:https://github.com/zpfbuaa/JobduInCPlusPlus 参考代码: ...

  9. 题目1042:Coincidence(最长公共子序列 dp题目)

    题目链接:http://ac.jobdu.com/problem.php?pid=1042 详解链接:https://github.com/zpfbuaa/JobduInCPlusPlus 参考代码: ...

  10. 概率dp+期望dp 题目列表(一)

    表示对概率和期望还不是很清楚定义. 目前暂时只知道概率正推,期望逆推,然后概率*某个数值=期望. 为什么期望是逆推的,例如你求到某一个点的概率我们可以求得,然后我们只要运用dp从1~n每次都加下去就好 ...

随机推荐

  1. nth-child,nth-last-child,only-child,nth-of-type,nth-last-of-type,only-of-type,first-of-type,last-of-type,first-child,last-child伪类区别和用法

    我将这坨伪类分成三组,第一组:nth-child,nth-last-child,only-child第二组:nth-of-type,nth-last-of-type,第三组:first-of-tpye ...

  2. 《STL源码剖析》读书笔记

    转载:https://www.cnblogs.com/xiaoyi115/p/3721922.html 直接逼入正题. Standard Template Library简称STL.STL可分为容器( ...

  3. Linux进程的创建函数fork()及其fork内核实现解析【转】

    转自:http://www.cnblogs.com/zengyiwen/p/5755193.html 进程的创建之fork() Linux系统下,进程可以调用fork函数来创建新的进程.调用进程为父进 ...

  4. 013 GC机制

    本文转自:https://www.cnblogs.com/shudonghe/p/3457990.html 最近还是在找工作,在面试某移动互联网公司之前认为自己对Java的GC机制已经相当了解,其他面 ...

  5. Keras自定义评估函数

    1. 比较一般的自定义函数: 需要注意的是,不能像sklearn那样直接定义,因为这里的y_true和y_pred是张量,不是numpy数组.示例如下: from keras import backe ...

  6. Java集合里的一些“坑”

    这里主要谈下Java集合在使用中容易被忽略.又容易出现的两个“坑”,一个是集合与数组互相转换,另一个是集合遍历删除.主要通过代码演示. 一.集合与数组互相转换中的“坑” //Test1.java pa ...

  7. Photon3Unity3D.dll 解析四——LitePeer

    LitePeer 玩家 Connect      连接服务器 Disconnect  断开与服务器的连接 OpJoin        进入游戏 OpLeave     离开游戏,但仍与服务器保持连接 ...

  8. python【项目】:工资管理(简易版)

    功能要求: 登录系统用户认证通过后才能列出下一级菜单员工信息表 登录系统要有用户登录.注册账号.删除账号.修改密码.退出 登录密码要有加密功能 从info.txt文件读取员工及工资信息,最后通过增加, ...

  9. Web开发:URL编码与解码

    通常如果一样东西需要编码,说明这样东西并不适合传输.原因多种多样,如Size过大,包含隐私数据,对于Url来说,之所以要进行编码,是因为Url中有些字符会引起歧义. 例如Url参数字符串中使用key= ...

  10. 【PAT】1006. 换个格式输出整数 (15)

    1006. 换个格式输出整数 (15) 让我们用字母B来表示“百”.字母S表示“十”,用“12...n”来表示个位数字n(<10),换个格式来输出任一个不超过3位的正整数.例如234应该被输出为 ...