某DP题目3
题意:
一根数轴上有n只怪物,第i个怪物所在的位置为ai,另有m个特殊点,第i个特殊点所在的位置为bi。你可以对怪物进行移动,若两怪物相邻,那么你不能把他们分开,移动时要看作一个整体。你可以选择向左或向右移动,直到撞到怪物,移动的次数不限制。现在要求最大数量的呆在特殊点上的怪物。 n <= 100000,m <= 2000
分析:
做这题的时候真的非常烦躁,卡在描述状态很久,静下心来思考才能更好地领悟。
由于最终答案与特殊点密切相关,且特殊点是固定不变的,我们不妨以特殊点为基础作转移。接下来我们就可以分情况来考虑了:假设第i只怪兽在特殊点j的左边,那么就需要pos[j]-pos[i]只怪兽填充,即第i+1~i+pos[j]-pos[i]向左移动;反之亦然。
然后我就思考状态,发现无论怎么想,转移都涉及到左移和右移,会出现状态重叠的情况。
那么就要把左移和右移分开,使转移的时候不出现状态重叠的情况。我们令F[i]为前i只怪兽能到达的特殊点的最大数量,而且还带有限制,对于转移怪兽i的时候,怪兽i只能选择不动或者向左移动。那不是说怪兽可以左右移吗?是的,只是怪兽i的向右移是在怪兽i+1~n的转移中,将左右移分开了。这样F[i]所得到的方案必满足所有的怪兽小于等于第i只怪兽的位置pos[i],避免了状态的重叠,这在后面的转移当中至关重要。
那么要如何转移呢?
其实在上面的思考中,已经可以得到答案了。
对于F[i]的转移,只有两种:不动或者向左移动。转移是基于特殊点的,你的转移都是为了去占满更多的特殊点,分类讨论如何占满。
1、不动。枚举位置比怪兽i小的特殊点j,若要占据特殊点j,那么就需要i-(pos[i]-pos[j])~i-1的怪兽右移,转移方程即为:F[i] = max{F[i-(pos[i]-pos[j])-1]+1}。当然还需要注意怪兽连成一块的情况。
2、向左移动。枚举位置特殊点j,以及预处理出位置最大不超过特殊点j的怪兽p。若要占据特殊点j,那么i-p需大于等于pos[j]-pos[p],转移方程即为:F[i] = max{F[p]+1}。这里如果出现连成一块的情况的话,就需要判断第i只怪兽是否在块的最右端,否则,又会出现状态重叠的情况。
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <iostream> using namespace std; const int maxn = ;
const int maxm = ;
int n, m, a[maxn], b[maxm];
int belong[maxn], lef_block[maxn], rig_block[maxn], Bcnt;
int p[maxm], f[maxn]; void in()
{
scanf("%d %d", &n, &m);
for (int i = ; i <= n; ++i)
scanf("%d", &a[i]);
for (int i = ; i <= m; ++i)
scanf("%d", &b[i]);
} void prepare()
{
sort(a+, a+n+);
sort(b+, b+m+);
Bcnt = ;
for (int i = ; i <= n; ++i)
{
if (a[i] != a[i-]+ || i == )
{
belong[i] = ++Bcnt;
lef_block[Bcnt] = i;
}
else
belong[i] = Bcnt;
if (a[i+] != a[i]+)
rig_block[Bcnt] = i;
}
for (int i = ; i <= m; ++i)
{
p[i] = p[i-];
while (a[p[i]+] <= b[i])
p[i] ++;
}
} void dp()
{
f[] = ;
for (int i = ; i <= n; ++i)
{
f[i] = f[i-];
for (int j = ; j <= m; ++j){
if (b[j] <= a[i])
{
//part 1 : i don't move, others rig-move
if (i-(a[i]-b[j]) >= )
{
int t = lef_block[belong[i-(a[i]-b[j])]];
f[i] = max(f[t-]+, f[i]);
}
//part 2 : i lef-move
if (b[j]-a[p[j]] <= i-p[j] && rig_block[belong[i]] == i)
{
f[i] = max(f[p[j]]+, f[i]);
}
}
else
break ;
}
}
printf("%d\n", f[n]);
} void work()
{
prepare();
dp();
} int main()
{
freopen("a.in", "r", stdin);
freopen("a.out", "w", stdout);
in();
work();
return ;
}
某DP题目3的更多相关文章
- DP题目列表/弟屁专题
声明: 1.这份列表不是我原创的,放到这里便于自己浏览和查找题目. ※最近更新:Poj斜率优化题目 1180,2018,3709 列表一:经典题目题号:容易: 1018, 1050, 1083, 10 ...
- dp题目列表
此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...
- dp题目
从别的地方看来,最近一直在啃DP,有个目标,更有动力了. 1.Robberies 连接 :http://acm.hdu.edu.cn/showproblem.php?pid=2955 背包; ...
- 插头DP题目泛做(为了对应WYD的课件)
题目1:BZOJ 1814 URAL 1519 Formula 1 题目大意:给定一个N*M的棋盘,上面有障碍格子.求一个经过所有非障碍格子形成的回路的数量. 插头DP入门题.记录连通分量. #inc ...
- 很好的一个dp题目 Codeforces Round #326 (Div. 2) D dp
http://codeforces.com/contest/588/problem/D 感觉吧,这道题让我做,我应该是不会做的... 题目大意:给出n,L,K.表示数组的长度为n,数组b的长度为L,定 ...
- 两道很好的dp题目【4.29考试】
A 问题描述: 对于一个排列,考虑相邻的两个元素,如果后面一个比前面一个大,表示这个位置是上升的,用I表示,反之这个位置是下降的,用D表示.如排列3,1,2,7,4,6,5可以表示为DIIDID. 现 ...
- 题目1453:Greedy Tino(dp题目)
题目链接:http://ac.jobdu.com/problem.php?pid=1453 详解链接:https://github.com/zpfbuaa/JobduInCPlusPlus 参考代码: ...
- 题目1452:搬寝室(dp题目)
题目链接:http://ac.jobdu.com/problem.php?pid=1452 详解链接:https://github.com/zpfbuaa/JobduInCPlusPlus 参考代码: ...
- 题目1042:Coincidence(最长公共子序列 dp题目)
题目链接:http://ac.jobdu.com/problem.php?pid=1042 详解链接:https://github.com/zpfbuaa/JobduInCPlusPlus 参考代码: ...
- 概率dp+期望dp 题目列表(一)
表示对概率和期望还不是很清楚定义. 目前暂时只知道概率正推,期望逆推,然后概率*某个数值=期望. 为什么期望是逆推的,例如你求到某一个点的概率我们可以求得,然后我们只要运用dp从1~n每次都加下去就好 ...
随机推荐
- php简单文件管理器——php经典实例
<html> <head> <title>文件管理</title> <meta charset='utf-8' /> </head&g ...
- 关于[神州数码信息安全DCN杯/信息安全管理与评估]的一些经验之谈
前阵子参加了神州数码的比赛,赛后有如下经验分享,给还没参加过的朋友分享一下心德以及要注意的坑. 先科普一下这个比赛的三个阶段: 第一阶段主要是考网络部分的,例如搭建wifi以及防火墙诸如此类的设备. ...
- Linux内核中的常用宏container_of其实很简单【转】
转自:http://blog.csdn.net/npy_lp/article/details/7010752 开发平台:Ubuntu11.04 编 译器:gcc version 4.5.2 (Ubun ...
- javaScript如何跳出多重循环break、continue
先来说说break和continue之间的区别 for(var i=0;i<10;i++){ if(i>5){ break; }}console.log(i); ---6 •当i ...
- centos6.5 使用 rpm 安装 mysql
从mysql网站下载mysql rpm安装包(包括server.client) 1.安装server rpm -ivh MySQL-server-5.6.19-1.el6.x86_64.rpm 强制安 ...
- Java web项目中新建maven项目出现的问题
1.首先新建maven项目,新建Maven时出现了版本问题,报错 第一个错误:jdk版本与project facets不匹配(大概是这样,忘记截图了),那么解决办法是: 在项目右击--->Pro ...
- Linux 基础——文件搜索命令find
一.find命令的好处 有时会经常在目录下找文件或目录的具体存放在哪,但是该目录下的文件又很多不好找出.这时并不需要手动查看所有的文件,用find命令来帮助查找就行了.所以文件或目录一定归好类,存放有 ...
- 再读《Parallel Programming with Python》并作笔记
并发编程,在哪个语言里都属于高端应用,一定得会了才好意思说懂了这门语言. 在工作中用得并不是很多,忘了一些内容,就慢慢看,慢慢补上. 今天一天看了近三分之一(我看外文越来越快了??:)), 实践一下多 ...
- NoSql数据库 设计上面的一些心得
NoSql数据库这个概念听闻许久了,也陆续看到很多公司和产品都在使用,优缺点似乎都被分析的清清楚楚.但我心里一直存有一个疑惑,它的出现究竟是为了解决什么问题? 用户信息表,书籍信息表,用户为书籍打分信 ...
- .NET 社区汇总
英文社区: 名称:MSDN 地址:http://msdn.microsoft.com/zh-cn/default.aspx 描述:这个网站是大家学.Net的初始网站,也是.net方面官方和权威的资料, ...