POJ 3233 Matrix Power Series (矩阵快速幂)
Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A^2 + A^3 + … + A^k.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4
0 1
1 1
Sample Output
1 2
2 3
分析:
可以很简单的看出来,这是求矩阵快速幂的题,但是这里面还有一个问题就是它不仅仅是求出一个快速幂就行了,是一系列的快速幂求和,如果我们用普通的方法把每一个幂次求出来然后再相加的话,TLE.所以我们得想到一个解决的办法。
我们令矩阵I是n×n得单位矩阵,
将矩阵A得形式转换为
则左下角得那个n阶矩阵即为所求,但是还要注意的一点就是前面还加上了一个单位矩阵,所以最后的答案还要把单位矩阵减去。
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int n,k,m;
struct matrix
{
int tu[100][100];
matrix()
{
memset(tu,0,sizeof(tu));
}
} A,B;
matrix mul(matrix &A,matrix &B)///定义矩阵的乘法
{
matrix C;
for(int i=0; i<2*n; i++)
for(int j=0; j<2*n; j++)
for(int k=0; k<2*n; k++)
{
C.tu[i][j]=(C.tu[i][j]+(A.tu[i][k]*B.tu[k][j]%m))%m;
}
return C;
}
matrix quick_mi(matrix A,int b)///求一个矩阵的A的b次方
{
matrix C;
for(int i=0; i<2*n; i++)
C.tu[i][i]=1;
while(b)
{
if(b&1)
C=mul(C,A);
b>>=1;
A=mul(A,A);
}
return C;
}
void solve()
{
}
int main()
{
scanf("%d%d%d",&n,&k,&m);
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
{
scanf("%d",&A.tu[i][j]);
B.tu[i][j]=A.tu[i][j];
}
B.tu[n+i][i]=B.tu[n+i][n+i]=1;///把整个矩阵扩展到2*n维
}
B=quick_mi(B,k+1);///求出这个矩阵的k+1次矩阵
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
{
int a=B.tu[n+i][j]%m;///要求的是左下角的n阶矩阵
if(i==j)
a=(a+m-1)%m;///还要减去单位矩阵
printf("%d%c",a,j+1==n?'\n':' ');
}
return 0;
}
POJ 3233 Matrix Power Series (矩阵快速幂)的更多相关文章
- POJ 3233 Matrix Power Series 矩阵快速幂
设S[k] = A + A^2 +````+A^k. 设矩阵T = A[1] 0 E E 这里的E为n*n单位方阵,0为n*n方阵 令A[k] = A ^ k 矩阵B[k] = A[k+1] S[k] ...
- POJ 3233 Matrix Power Series 矩阵快速幂+二分求和
矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...
- POJ 3233:Matrix Power Series 矩阵快速幂 乘积
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 18450 Accepted: ...
- poj 3233 Matrix Power Series(矩阵二分,高速幂)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 15739 Accepted: ...
- POJ3233:Matrix Power Series(矩阵快速幂+二分)
http://poj.org/problem?id=3233 题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k ...
- poj 3233 Matrix Power Series 矩阵求和
http://poj.org/problem?id=3233 题解 矩阵快速幂+二分等比数列求和 AC代码 #include <stdio.h> #include <math.h&g ...
- POJ3233 Matrix Power Series 矩阵快速幂 矩阵中的矩阵
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 27277 Accepted: ...
- Poj 3233 Matrix Power Series(矩阵乘法)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Description Given a n × n matrix A and ...
- POJ 3233 Matrix Power Series(矩阵高速功率+二分法)
职务地址:POJ 3233 题目大意:给定矩阵A,求A + A^2 + A^3 + - + A^k的结果(两个矩阵相加就是相应位置分别相加).输出的数据mod m. k<=10^9. 这 ...
- POJ3233:Matrix Power Series(矩阵快速幂+递推式)
传送门 题意 给出n,m,k,求 \[\sum_{i=1}^kA^i\] A是矩阵 分析 我们首先会想到等比公式,然后得到这样一个式子: \[\frac{A^{k+1}-E}{A-E}\] 发现要用矩 ...
随机推荐
- sublime text there are no packages available for installation 解决办法
hosts 增加一行 : #50.116.33.29 sublime.wbond.net.
- php缩略图
/*引入文件Easyphpthumbnail.class.php 引用地址:http://www.itdaodan.com/article-detail-id-252.html */ class ...
- 第117天:Ajax实现省市区三级联动
Ajax实现省市区三级联动 思路: (1)首先获取省份信息 (2)发起Ajax请求,注意dataType中的T大写 (3)封装回调函数,回调函数success中用$.each循环每一条数据,动态创建o ...
- bzoj2301-Problem b
题意 \(T\le 5\times 10^4\) 次询问,每次询问 \(a,b,c,d,k\le 5\times 10^4\),求 \[ \sum _{i=a}^b\sum _{j=c}^d[gcd( ...
- C 程序结构——Day01
C Hello World 实例 C 程序主要包括以下部分: 预处理器指令 函数 变量 语句 & 表达式 注释 让我们看一段简单的代码,可以输出单词 "Hello World&quo ...
- 520的信心赛——点点玩deeeep
3.点点玩 deeeep(deeeep.cpp) 描述 点点最近迷上了 deeeep(此 de 非彼 de),在研究一个特殊的最长树链问题 ...
- Spring Boot系列教程四:配置文件详解properties
一.配置随机数,使用随机数 在application.properties文件添加配置信息 #32位随机数 woniu.secret=${random.value} #随机整数 woniu.numbe ...
- [NOI2008]糖果雨
bzoj1062[Noi2008]糖果雨 首先给出的颜色没有用. 估计要用数据结构.而线段难以维护. 考虑把线段变成点 T是单增的. 所以询问的时候,存在的线段都可能贡献答案. 那些线段的位置如果可以 ...
- python基础----再看property、描述符(__get__,__set__,__delete__)
一.再看property 一个静态属性property ...
- css美化Div边框的样式实例
很多时候如果不是用了很多样式,很难把边框修饰得好看,看了一篇博文,觉得真的挺漂亮,也挺好看. 转载的博文地址 将这段美化的css代码 border:1px solid #96c2f1;backgrou ...