题目链接:https://cn.vjudge.net/problem/POJ-1904

自己一开始的想法,打算用匈牙利算法实现,找二分图的最大匹配。但是打了打发现,不太好实现。原因如下:匈牙利算法是不停的找增广路。如果这个题用匈牙利算法实现的时候,就是这个地方:

 bool Find(int t)
{
for(int i=; i<=m; i++)
{
if(line[t][i]&&Exit[i]==)
{
Exit[i]=;
if(net[i]==||Find(net[i]))
{
net[i]=t;
return true;
}
}
}
}

,这个是找到合法的就返回,无法把所有的情况都找到,所以这个方法不行。

然后再去想tarjan算法,找缩点,也就是图上的两点都能都到达,如果是王子向喜欢的公主连线的话,连一条单向边,如果是公主喜欢的王子的话,然后再从公主连向王子一条单向边,这样,就能够在最大匹配的图上实现一个连通图的建立.

但是注意这个题有个坑点,在构成连通图的时候,有的王子不喜欢某个公主,但是在图上也有可能通过别的点联通起来,这个时候就需要特判一下了。

AC代码:

 #include<iostream>
#include<stack>
#include<iomanip>
#include<algorithm>
#include<cmath>
#include<string>
#include<cstring>
#include<queue>
#include<vector>
#include<stdio.h>
#include<map>
using namespace std;
# define inf 0x3f3f3f3f
# define ll long long
const int N = + ;
const int M = + ;
struct node
{
int to;
int nex;
} edge[M];
int head[M],low[N],dfn[N],istack[N];
int num,ind,col,n,m;
stack<int>q;
vector<int>wakaka[N];
vector<int>w1;
vector<int>ans[N];
int Map[][];
void init()
{
while(!q.empty())q.pop();
memset(head,-,sizeof(head));
num=,ind=,col=;
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(istack,,sizeof(istack));
}
void addedge(int fr,int to)
{
edge[num].to=to;
edge[num].nex=head[fr];
head[fr]=num++;
}
void tarjan(int u,int root)
{
q.push(u);
low[u]=dfn[u]=++ind;
for(int i=head[u]; i!=-; i=edge[i].nex)
{
int v=edge[i].to;
if(dfn[v]==)
{
tarjan(v,u);
low[u]=min(low[u],low[v]);
}
else if(istack[v]==)
{
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u])
{
int t;
col++;
do
{
t=q.top();
q.pop();
istack[t]=col;
wakaka[col].push_back(t);
}
while(t!=u);
}
}
int main()
{
init();
scanf("%d",&n);
int t;
for(int i=; i<=n; i++)
{
scanf("%d",&m);
for(int j=; j<=m; j++)
{
scanf("%d",&t);
addedge(i,t+n);
Map[i][t]=;
}
}
for(int i=; i<=n; i++)
{
scanf("%d",&t);
addedge(t+n,i);
// Map[t][i]=1;
}
for(int i=; i<=n; i++)
{
if(dfn[i]==)
{
tarjan(i,);
}
}
for(int i=; i<=col; i++)
{
sort(wakaka[i].begin(),wakaka[i].end());
int len=wakaka[i].size();
for(int j=; j<len; j++)
{
int u=wakaka[i][j];
if(u<=n)w1.push_back(u);
else
{
int len2=w1.size();
for(int k=; k<len2; k++)
{
if(Map[w1[k]][u-n])//判断是不是有相互喜欢的关系
ans[w1[k]].push_back(u-n);
}
}
}
w1.clear();
}
for(int i=; i<=n; i++)
{
sort(ans[i].begin(),ans[i].end());
int len=ans[i].size();
printf("%d",len);
for(int j=; j<len; j++)
{
printf(" %d",ans[i][j]);
}
printf("\n");
}
return ;
}

King's Quest POJ - 1904 匈牙利算法的思想+tarjan缩点+染色的更多相关文章

  1. King's Quest - poj 1904(强连通分量+外挂输入输出)

    题意:国王有N个儿子,每个儿子都有很多喜欢的姑娘,官员为每个王子都找了一个姑娘让他们结婚,不过国王不满意,他想知道他的每个儿子都可以和那个姑娘结婚(前提他的儿子必须喜欢那个姑娘) 分析:因为最下面一行 ...

  2. King's Quest POJ - 1904(强连通分量)

    建图:王子u喜欢女孩v,则u到v连一条边.对于给出的初始完美匹配,王子u与女孩v匹配,则v到u连一条边.然后求SCC. 显然对于同一个SCC中王子数目和女孩数目是相等的,并且从某个王子出发能够到达所有 ...

  3. POJ 1236 Network of Schools(Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16806   Accepted: 66 ...

  4. POJ 3041 匈牙利算法模板题

    一开始预习是百度的算法 然后学习了一下 然后找到了学长的ppt 又学习了一下.. 发现..居然不一样... 找了模板题试了试..百度的不好用 反正就是wa了..果然还是应当跟着学长混.. 图两边的点分 ...

  5. Asteroids POJ - 3041 匈牙利算法+最小点覆盖König定理

    题意: 给出一个N*N的地图N   地图里面有K个障碍     你每次可以选择一条直线 消除这条直线上的所有障碍  (直线只能和列和行平行) 问最少要消除几次 题解: 如果(x,y)上有一个障碍 则把 ...

  6. POJ 2446 匈牙利算法

    题意: 思路: 二分图匹配... // by SiriusRen #include <cmath> #include <cstdio> #include <cstring ...

  7. POJ 2239 匈牙利算法

    思路:最大匹配 也是很裸的一道题-. // by SiriusRen #include <cstdio> #include <cstring> #include <alg ...

  8. POJ 2536 匈牙利算法

    思路:最大匹配 (很裸) // by SiriusRen #include <cmath> #include <cstdio> #include <cstring> ...

  9. poj 1236 Network of Schools(tarjan+缩点)

    Network of Schools Description A number of schools are connected to a computer network. Agreements h ...

随机推荐

  1. Spring Cloud 之 Eureka

    Spring Cloud Eureka 是 Spring Cloud Netflix 微服务套件的一部分,基于 Netflix Eureka 做了二次封装,主要负责完成微服务架构中的服务治理功能,服务 ...

  2. PC和FPGA间的串口通信实现

    应用笔记 V1.0 2015/03/26 PC和FPGA间的串口通信实现   概述   本文将介绍PC和FPGA间的串口通信实现的基本思路和Verilog代码,对于通信而言,收发双方都要有相应的控制. ...

  3. ZOJ2686_Cycle Gameu

    题目的意思是给你一个多边形,每条边上有一个权值,你开始在第一个点.每次你必须经过一条有权值的边,并且把该边的权值减小到任意一个非负值,到达该边的另外一个点. 谁第一个无法操作就算输. 题意很简单,解法 ...

  4. 当对象使用sort时候 前提是实现compareTo的方法

  5. Android四大组件之Intent

    Intent不是android几大组件框架,但是确实是android 各大组件之间沟通的桥梁. 尤其Intent对于activity有很大的关系. 一下是我个人对task以及backstack的总结.

  6. shell的tr命令

    tr,translate的简写,即翻译的意思.主要用来从标准输入中通过替换或删除操作进行字符转换.只接受标准输入,不接受文件参数. 命令语法: tr [–c/d/s/t] [SET1] [SET2] ...

  7. mysql允许远程特定ip访问

    1.登录 mysql -u root -p 之后输入密码进行登陆 2.权限设置及说明 2.1添加远程ip访问权限 GRANT ALL PRIVILEGES ON *.* TO 'root'@'10.1 ...

  8. 解题:ZJOI 2014 力

    题面 事实说明只会FFT板子是没有用的,还要把式子推成能用FFT/转化一下卷积的方式 虽然这个题不算难的多项式卷积 稍微化简一下可以发现实际是$q_i$和$\frac{1}{(i-j)^2}$在卷,然 ...

  9. 据说要写一个CTSC&APIO的收获

    就不写流水帐了,总的写一下吧.先从最浅显的地方开始——知识.大概被普及了一发带花树,算上自己的考试,还被普及了一发洲阁筛.当然更多的还是对于一些知识的强化,比如:乱搞(这东西真是太重点了啊).DP.数 ...

  10. Linux基础-shell脚本知识整理和脚本编写----------变量、运算符、流程控制、函数、计划任务(发送邮件)

    I:知识整理:变量.运算符.流程控制.函数.计划任务 变量 系统变量:set:显示所有变量                env:环境变量 常用系统变量: path pwd lang home his ...