【BZOJ】4033: [HAOI2015]树上染色 树上背包
【题意】给定n个点的带边权树,要求将k个点染成黑色,使得 [ 黑点的两两距离和+白点的两两距离和 ] 最大。n<=2000。
【算法】树上背包
【题解】设f[i][j]表示子树i中有j个黑点对答案的贡献(包括点 i 到父亲的边 p ),由于边p的贡献只和 j 有关,所以最后再统计。
所以做树上背包即可,注意这题特殊在f[x][0]≠0,所以初始f[x][k]+=f[y][0],然后不要把0作为物品。
最后统计边p的贡献:w[p] *(子树内黑点*子树外黑点+子树内白点*子树外白点)。
常数问题:要尽可能避免枚举无用状态,不然常数太大了,优化见代码。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=,inf=0x3f3f3f3f;
struct edge{int v,w,from;}e[maxn*];
int first[maxn],tot,n,K,sz[maxn];
ll f[maxn][maxn];
void insert(int u,int v,int w){tot++;e[tot].v=v;e[tot].w=w;e[tot].from=first[u];first[u]=tot;}
ll max(ll a,ll b){return a<b?b:a;}
void dfs(int x,int fa,int w){
for(int i=;i<=K;i++)f[x][i]=-inf;
sz[x]=;
for(int i=first[x];i;i=e[i].from)if(e[i].v!=fa){
dfs(e[i].v,x,e[i].w);
sz[x]+=sz[e[i].v];
for(int k=min(sz[x],K);k>=;k--){
f[x][k]+=f[e[i].v][];//
for(int j=min(k,sz[e[i].v]);j>=;j--)if(f[x][k-j]>-inf){//
f[x][k]=max(f[x][k],f[x][k-j]+f[e[i].v][j]);
}else break;
}
}
for(int i=;i<=K;i++)if(f[x][i]>-inf)f[x][i]+=1ll*w*(1ll*i*(K-i)+1ll*(sz[x]-i)*(n-K-sz[x]+i));
}
int main(){
scanf("%d%d",&n,&K);
for(int i=;i<n;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
insert(u,v,w);insert(v,u,w);
}
dfs(,,);
printf("%lld",f[][K]);
return ;
}
【BZOJ】4033: [HAOI2015]树上染色 树上背包的更多相关文章
- BZOJ 4033: [HAOI2015]树上染色题解
BZOJ 4033: [HAOI2015]树上染色题解(树形dp) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327400 原题地址: BZOJ 403 ...
- bzoj 4033: [HAOI2015]树上染色 [树形DP]
4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...
- BZOJ 4033[HAOI2015] 树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3188 Solved: 1366[Submit][Stat ...
- [HAOI2015]树上染色(树上dp)
[HAOI2015]树上染色 这种要算点对之间路径的长度和的题,难以统计每个点的贡献.这个时候一般考虑算每一条边贡献了哪些点对. 知道这个套路以后,那么这题就很好做了. 状态:设\(dp[u][i]\ ...
- [BZOJ 4033] [HAOI2015] T1 【树形DP】
题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...
- bzoj 4033: [HAOI2015]树上染色【树形dp】
准确的说应该叫树上分组背包?并不知道我写的这个叫啥 设计状态f[u][j]为在以点u为根的子树中有j个黑点,转移的时候另开一个数组,不能在原数组更新(因为会用到没更新时候的状态),方程式为g[j+k] ...
- bzoj 4033: [HAOI2015]树上染色
Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距 ...
- BZOJ 4033 [HAOI2015]树上染色 ——树形DP
可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...
- 洛谷P3177 [HAOI2015]树上染色(树上背包)
题意 题目链接 Sol 比较套路吧,设\(f[i][j]\)表示以\(i\)为根的子树中选了\(j\)个黑点对答案的贡献 然后考虑每条边的贡献,边的两边的答案都是可以算出来的 转移的时候背包一下. # ...
随机推荐
- Java 异常总结
Throwablede类是 Java 语言中所有错误或异常的超类. 两个子类的实例,Error 和 Exception Error 是 Throwablede 的子类,用于指示合理的应用程序不应该试图 ...
- WebService(一)
1.简介 Web service是一个平台独立的,低耦合的,自包含的.基于可编程的web的应用程序,可使用开放的XML(标准通用标记语言下的一个子集)标准来描述.发布.发现.协调和配置这些应用程序,用 ...
- PAT 甲级 1127 ZigZagging on a Tree
https://pintia.cn/problem-sets/994805342720868352/problems/994805349394006016 Suppose that all the k ...
- mac下mysql5.7.10密码问题
mysql5.7.10刚安装好,会生成一个随机密码. 如果没记住这个随机密码,那么到mysql/bin/下执行mysql_secure_installation命令 按照提示重置密码和其他选项. ps ...
- 【Python】Python对象类型及其运算
Python对象类型及其运算 基本要点: 程序中储存的所有数据都是对象(可变对象:值可以修改 不可变对象:值不可修改) 每个对象都有一个身份.一个类型.一个值 例: >>> a1 = ...
- 【数据库】Mysql更改默认引擎为Innodb的步骤方法
前言 InnoDB和MyISAM是许多人在使用MySQL时最常用的两个表类型,这两个表类型各有优劣,视具体应用而定. 基本的差别为:MyISAM类型不支持事务处理等高级处理,而InnoDB类型支持.M ...
- bug:margin合并
demo1和demo2存在margin合并问题:外边距合并指的是,当两个垂直外边距相遇时,它们将形成一个外边距.合并后的外边距的高度等于两个发生合并的外边距的高度中的较大者.弥补方案:bfc; 添加一 ...
- 【明哥报错簿】之json转换报错---net.sf.ezmorph.bean.MorphDynaBean cannot be cast to XXXDO
简单的json和bean转换直接用: public static void main(String[] args) { String s = "{'request': [{'orderCod ...
- TCP(Transmission Control Protocol)学习笔记
一.TCP(Transmission Control Protocol)原理介绍(参考维基百科) TCP连接包括三种状态:连接建立.数据传送和连接终止. TCP用三路握手(three-way hand ...
- 常州day2
Task1 为了测试小 W 的数学水平,果果给了小 W N 个点,问他这 N 个点能构成的三角形个数. 对于 100%的数据:N<=100,保证任意两点不重合,坐标<=10000 恶心题( ...