Combining Data From Multiple Excel Files

Introduction

A common task for python and pandas is to automate the process of aggregating data from multiple files and spreadsheets.

This article will walk through the basic flow required to parse multiple Excel files, combine the data, clean it up and analyze it. The combination of python + pandas can be extremely powerful for these activities and can be a very useful alternative to the manual processes or painful VBA scripts frequently used in business settings today.

The Problem

Before, I get into the examples, here is a simple diagram showing the challenges with the common process used in businesses all over the world to consolidate data from multiple Excel files, clean it up and perform some analysis.

If you’re reading this article, I suspect you have experienced some of the problems shown above. Cutting and pasting data or writing painful VBA code will quickly get old. There has to be a better way!

Python + pandas can be a great alternative that is much more scaleable and powerful.

By using a python script, you can develop a more streamlined and repeatable solution to your data processing needs. The rest of this article will show a simple example of how this process works. I hope it will give you ideas of how to apply these tools to your unique situation.

Collecting the Data

If you are interested in following along, here are the excel files and a link to the notebook:

The first step in the process is collecting all the data into one place.

First, import pandas and numpy

import pandas as pd
import numpy as np

  

Let’s take a look at the files in our input directory, using the convenient shell commands in ipython.

!ls ../in
address-state-example.xlsx report.xlsx sample-address-new.xlsx
customer-status.xlsx sales-feb-2014.xlsx sample-address-old.xlsx
excel-comp-data.xlsx sales-jan-2014.xlsx sample-diff-1.xlsx
my-diff-1.xlsx sales-mar-2014.xlsx sample-diff-2.xlsx
my-diff-2.xlsx sample-address-1.xlsx sample-salesv3.xlsx
my-diff.xlsx sample-address-2.xlsx
pricing.xlsx sample-address-3.xlsx

  

There are a lot of files, but we only want to look at the sales .xlsx files.

!ls ../in/sales*.xlsx
../in/sales-feb-2014.xlsx ../in/sales-jan-2014.xlsx ../in/sales-mar-2014.xlsx

  

Use the python glob module to easily list out the files we need.

import glob
glob.glob("../in/sales*.xlsx")
['../in/sales-jan-2014.xlsx',
'../in/sales-mar-2014.xlsx',
'../in/sales-feb-2014.xlsx']

  

This gives us what we need. Let’s import each of our files and combine them into one file. Panda’s concat and append can do this for us. I’m going to use append in this example.

The code snippet below will initialize a blank DataFrame then append all of the individual files into the all_data DataFrame.

all_data = pd.DataFrame()
for f in glob.glob("../in/sales*.xlsx"):
df = pd.read_excel(f)
all_data = all_data.append(df,ignore_index=True)

  

Now we have all the data in our all_data DataFrame. You can use describe to look at it and make sure you data looks good.

all_data.describe()

  

  account number quantity unit price ext price
count 1742.000000 1742.000000 1742.000000 1742.000000
mean 485766.487945 24.319173 54.985454 1349.229392
std 223750.660792 14.502759 26.108490 1094.639319
min 141962.000000 -1.000000 10.030000 -97.160000
25% 257198.000000 12.000000 32.132500 468.592500
50% 527099.000000 25.000000 55.465000 1049.700000
75% 714466.000000 37.000000 77.607500 2074.972500
max 786968.000000 49.000000 99.850000 4824.540000

A lot of this data may not make much sense for this data set but I’m most interested in the count row to make sure the number of data elements makes sense. In this case, I see all the data rows I expect.

all_data.head()

  

  account number name sku quantity unit price ext price date
0 740150 Barton LLC B1-20000 39 86.69 3380.91 2014-01-01 07:21:51
1 714466 Trantow-Barrows S2-77896 -1 63.16 -63.16 2014-01-01 10:00:47
2 218895 Kulas Inc B1-69924 23 90.70 2086.10 2014-01-01 13:24:58
3 307599 Kassulke, Ondricka and Metz S1-65481 41 21.05 863.05 2014-01-01 15:05:22
4 412290 Jerde-Hilpert S2-34077 6 83.21 499.26 2014-01-01 23:26:55

It is not critical in this example but the best practice is to convert the date column to a date time object.

all_data['date'] = pd.to_datetime(all_data['date'])

  

Combining Data

Now that we have all of the data into one DataFrame, we can do any manipulations the DataFrame supports. In this case, the next thing we want to do is read in another file that contains the customer status by account. You can think of this as a company’s customer segmentation strategy or some other mechanism for identifying their customers.

First, we read in the data.

status = pd.read_excel("../in/customer-status.xlsx")
status

  

  account number name status
0 740150 Barton LLC gold
1 714466 Trantow-Barrows silver
2 218895 Kulas Inc bronze
3 307599 Kassulke, Ondricka and Metz bronze
4 412290 Jerde-Hilpert bronze
5 729833 Koepp Ltd silver
6 146832 Kiehn-Spinka silver
7 688981 Keeling LLC silver
8 786968 Frami, Hills and Schmidt silver
9 239344 Stokes LLC gold
10 672390 Kuhn-Gusikowski silver
11 141962 Herman LLC gold
12 424914 White-Trantow silver
13 527099 Sanford and Sons bronze
14 642753 Pollich LLC bronze
15 257198 Cronin, Oberbrunner and Spencer gold

We want to merge this data with our concatenated data set of sales. Use panda’s merge function and tell it to do a left join which is similar to Excel’s vlookup function.

all_data_st = pd.merge(all_data, status, how='left')
all_data_st.head()

  

  account number name sku quantity unit price ext price date status
0 740150 Barton LLC B1-20000 39 86.69 3380.91 2014-01-01 07:21:51 gold
1 714466 Trantow-Barrows S2-77896 -1 63.16 -63.16 2014-01-01 10:00:47 silver
2 218895 Kulas Inc B1-69924 23 90.70 2086.10 2014-01-01 13:24:58 bronze
3 307599 Kassulke, Ondricka and Metz S1-65481 41 21.05 863.05 2014-01-01 15:05:22 bronze
4 412290 Jerde-Hilpert S2-34077 6 83.21 499.26 2014-01-01 23:26:55 bronze

This looks pretty good but let’s look at a specific account.

all_data_st[all_data_st["account number"]==737550].head()

  

  account number name sku quantity unit price ext price date status
9 737550 Fritsch, Russel and Anderson S2-82423 14 81.92 1146.88 2014-01-03 19:07:37 NaN
14 737550 Fritsch, Russel and Anderson B1-53102 23 71.56 1645.88 2014-01-04 08:57:48 NaN
26 737550 Fritsch, Russel and Anderson B1-53636 42 42.06 1766.52 2014-01-08 00:02:11 NaN
32 737550 Fritsch, Russel and Anderson S1-27722 20 29.54 590.80 2014-01-09 13:20:40 NaN
42 737550 Fritsch, Russel and Anderson S1-93683 22 71.68 1576.96 2014-01-11 23:47:36 NaN

This account number was not in our status file, so we have a bunch of NaN’s. We can decide how we want to handle this situation. For this specific case, let’s label all missing accounts as bronze. Use the fillna function to easily accomplish this on the status column.

all_data_st['status'].fillna('bronze',inplace=True)
all_data_st.head()

  

  account number name sku quantity unit price ext price date status
0 740150 Barton LLC B1-20000 39 86.69 3380.91 2014-01-01 07:21:51 gold
1 714466 Trantow-Barrows S2-77896 -1 63.16 -63.16 2014-01-01 10:00:47 silver
2 218895 Kulas Inc B1-69924 23 90.70 2086.10 2014-01-01 13:24:58 bronze
3 307599 Kassulke, Ondricka and Metz S1-65481 41 21.05 863.05 2014-01-01 15:05:22 bronze
4 412290 Jerde-Hilpert S2-34077 6 83.21 499.26 2014-01-01 23:26:55 bronze

Check the data just to make sure we’re all good.

all_data_st[all_data_st["account number"]==737550].head()

  

  account number name sku quantity unit price ext price date status
9 737550 Fritsch, Russel and Anderson S2-82423 14 81.92 1146.88 2014-01-03 19:07:37 bronze
14 737550 Fritsch, Russel and Anderson B1-53102 23 71.56 1645.88 2014-01-04 08:57:48 bronze
26 737550 Fritsch, Russel and Anderson B1-53636 42 42.06 1766.52 2014-01-08 00:02:11 bronze
32 737550 Fritsch, Russel and Anderson S1-27722 20 29.54 590.80 2014-01-09 13:20:40 bronze
42 737550 Fritsch, Russel and Anderson S1-93683 22 71.68 1576.96 2014-01-11 23:47:36 bronze

Now we have all of the data along with the status column filled in. We can do our normal data manipulations using the full suite of pandas capability.

Using Categories

One of the relatively new functions in pandas is support for categorical data. From the pandas, documentation:

Categoricals are a pandas data type, which correspond to categorical variables in statistics: a variable, which can take on only a limited, and usually fixed, number of possible values (categories; levels in R). Examples are gender, social class, blood types, country affiliations, observation time or ratings via Likert scales.

For our purposes, the status field is a good candidate for a category type.

Version Warning
You must make sure you have a recent version of pandas ( > 0.15) installed for this example to work.
pd.__version__
'0.15.2'

  

First, we typecast it the column to a category using astype .

all_data_st["status"] = all_data_st["status"].astype("category")

  

This doesn’t immediately appear to change anything yet.

all_data_st.head()

  

  account number name sku quantity unit price ext price date status
0 740150 Barton LLC B1-20000 39 86.69 3380.91 2014-01-01 07:21:51 gold
1 714466 Trantow-Barrows S2-77896 -1 63.16 -63.16 2014-01-01 10:00:47 silver
2 218895 Kulas Inc B1-69924 23 90.70 2086.10 2014-01-01 13:24:58 bronze
3 307599 Kassulke, Ondricka and Metz S1-65481 41 21.05 863.05 2014-01-01 15:05:22 bronze
4 412290 Jerde-Hilpert S2-34077 6 83.21 499.26 2014-01-01 23:26:55 bronze

Buy you can see that it is a new data type.

all_data_st.dtypes
account number int64
name object
sku object
quantity int64
unit price float64
ext price float64
date datetime64[ns]
status category
dtype: object

  

Categories get more interesting when you assign order to the categories. Right now, if we call sort on the column, it will sort alphabetically.

all_data_st.sort(columns=["status"]).head()

  

  account number name sku quantity unit price ext price date status
1741 642753 Pollich LLC B1-04202 8 95.86 766.88 2014-02-28 23:47:32 bronze
1232 218895 Kulas Inc S1-06532 29 42.75 1239.75 2014-09-21 11:27:55 bronze
579 527099 Sanford and Sons S1-27722 41 87.86 3602.26 2014-04-14 18:36:11 bronze
580 383080 Will LLC B1-20000 40 51.73 2069.20 2014-04-14 22:44:58 bronze
581 383080 Will LLC S2-10342 15 76.75 1151.25 2014-04-15 02:57:43 bronze

We use set_categories to tell it the order we want to use for this category object. In this case, we use the Olympic medal ordering.

all_data_st["status"].cat.set_categories([ "gold","silver","bronze"],inplace=True)

  

Now, we can sort it so that gold shows on top.

all_data_st.sort(columns=["status"]).head()

  

  account number name sku quantity unit price ext price date status
0 740150 Barton LLC B1-20000 39 86.69 3380.91 2014-01-01 07:21:51 gold
1193 257198 Cronin, Oberbrunner and Spencer S2-82423 23 52.90 1216.70 2014-09-09 03:06:30 gold
1194 141962 Herman LLC B1-86481 45 52.78 2375.10 2014-09-09 11:49:45 gold
1195 257198 Cronin, Oberbrunner and Spencer B1-50809 30 51.96 1558.80 2014-09-09 21:14:31 gold
1197 239344 Stokes LLC B1-65551 43 15.24 655.32 2014-09-10 11:10:02 gold

Analyze Data

The final step in the process is to analyze the data. Now that it is consolidated and cleaned, we can see if there are any insights to be learned.

all_data_st["status"].describe()
count 1742
unique 3
top bronze
freq 764
Name: status, dtype: object

  

For instance, if you want to take a quick look at how your top tier customers are performaing compared to the bottom. Use groupbyto get the average of the values.

all_data_st.groupby(["status"])["quantity","unit price","ext price"].mean()

  

  quantity unit price ext price
status      
gold 24.680723 52.431205 1325.566867
silver 23.814241 55.724241 1339.477539
bronze 24.589005 55.470733 1367.757736

Of course, you can run multiple aggregation functions on the data to get really useful information

all_data_st.groupby(["status"])["quantity","unit price","ext price"].agg([np.sum,np.mean, np.std])

  

  quantity unit price ext price
  sum mean std sum mean std sum mean std
status                  
gold 8194 24.680723 14.478670 17407.16 52.431205 26.244516 440088.20 1325.566867 1074.564373
silver 15384 23.814241 14.519044 35997.86 55.724241 26.053569 865302.49 1339.477539 1094.908529
bronze 18786 24.589005 14.506515 42379.64 55.470733 26.062149 1044966.91 1367.757736 1104.129089

So, what does this tell you? Well, the data is completely random but my first observation is that we sell more units to our bronze customers than gold. Even when you look at the total dollar value associated with bronze vs. gold, it looks odd that we sell more to bronze customers than gold.

Maybe we should look at how many bronze customers we have and see what is going on?

What I plan to do is filter out the unique accounts and see how many gold, silver and bronze customers there are.

I’m purposely stringing a lot of commands together which is not necessarily best practice but does show how powerful pandas can be. Feel free to review my previous article here and here to understand it better. Play with this command yourself to understand how the commands interact.

all_data_st.drop_duplicates(subset=["account number","name"]).ix[:,[0,1,7]].groupby(["status"])["name"].count()
status
gold 4
silver 7
bronze 9
Name: name, dtype: int64

  

Ok. This makes a little more sense. We see that we have 9 bronze customers and only 4 customers. That is probably why the volumes are so skewed towards our bronze customers. This result makes sense given the fact that we defaulted to bronze for many of our customers. Maybe we should reclassify some of them? Obviously this data is fake but hopefully this shows how you can use these tools to quickly analyze your own data.

Conclusion

This example only covered the aggregation of 4 simple Excel files containing random data. However the principles can be applied to much larger data sets yet you can keep the code base very manageable. Additionally, you have the full power of python at your fingertips so you can do much more than just simply manipulate the data.

I encourage you to try some of these concepts out on your scenarios and see if you can find a way to automate that painful Excel task that hangs over your head every day, week or month.

Good luck!

import pandas as pd
import numpy as np
import glob # filenames
excel_names = ["123.xlsx", "1234.xlsx", "12345.xlsx"] # read them in
excels = [pd.ExcelFile(name) for name in excel_names] # turn them into dataframes
frames = [x.parse(x.sheet_names[0], header=None,index_col=None) for x in excels] # delete the first row for all frames except the first
# i.e. remove the header row -- assumes it's the first
frames[1:] = [df[1:] for df in frames[1:]] # concatenate them..
combined = pd.concat(frames) # write it out
combined.to_excel("c.xlsx", header=False, index=False)

  

python excel 文件合并的更多相关文章

  1. 多个EXCEL文件合并成一个

    Python的numpy处理起来会比较方便,有空实现一下,这里是Excel内部代码的方式: 合并方法如下: 1.需要把多个excel表都放在同一个文件夹里面,并在这个文件夹里面新建一个excel.如图 ...

  2. python3 把excel文件合并并保存到csv文件

    具体是这样,某路径下有很多 excel文件,文件名中包含相同关键字的是一类文件,把包含相同关键字的文件合并成一个文件,生成一个新的csv文件 # coding=utf-8 import xlrd im ...

  3. Python Excel文件的读写操作(xlwt xlrd xlsxwriter)

    转:https://www.cnblogs.com/ultimateWorld/p/8309197.html Python语法简洁清晰,作为工作中常用的开发语言还是很强大的(废话). python关于 ...

  4. python --- excel文件处理

    1.安装第三方库:openpyxl 2.操作示例 from openpyxl import load_workbook #.打开文件 file = load_workbook("test.x ...

  5. Python excel文件操作,编程练习题实例七十五

    纯文本文件 student.txt为学生信息, 里面的内容(包括花括号)如下所示: { "1":["张三",150,120,100], "2" ...

  6. 把一个文件夹下的多个excel文件合并到同一个excel的一个sheet里

    #!/usr/bin/python # -*- coding: UTF-8 -*- import pandas as pd import os if __name__ == '__main__': F ...

  7. excel多个文件合并

    多个excel文件合并成一个需要用ms office wps是不行的 1.将所有文件放在一个文件夹里 2.在文件夹里新建一个空的excel打开 右键sheet点击查看代码->输入下面代码-> ...

  8. Excel用Power Query把文件夹下所有文件合并为一个与合并多个表格

    Excel用Power Query把文件夹下所有文件合并为一个与合并多个表格 在 Excel Power Query 未出来之前,把文件夹下所有文件合并为一个与合并同一工作表中的多个工作表,需要用 V ...

  9. 【原创】.NET读写Excel工具Spire.Xls使用(2)Excel文件的控制

                  本博客所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p/4288836.html .NET读写Excel工具Spire.Xls使用文章 ...

随机推荐

  1. json对象转换

    String modules =...; //json格式的String对象 //String对象转换为JSON格式数组 JSONArray moduleArr=JSONObject.parseArr ...

  2. 一张图看懂高通QC1.0-QC4.0快充进化之路!QC2.0跟QC3.0充电区别

    快充技术日新月异,快充市场百家争鸣的今天,高通QC快充依然主导着市场.如今QC快充已发展到第四代,每一代都有着革命性的进步.从QC1.0到QC4.0更新换代时间之短,不免让广大人民群众抱怨. “啥?老 ...

  3. ThinkPHP Http工具类(用于远程采集 远程下载) phpSimpleHtmlDom采集类库_Jquery筛选方式 使用phpQuery轻松采集网页内容http://www.thinkphp.cn/extend/541.html

    [php]代码库 view sourceprint? <?php // +------------------------------------------------------------ ...

  4. questions information

    1. 面向对象 类(Class): 用来描述具有相同的属性和方法的对象的集合.它定义了该集合中每个对象所共有的属性和方法.对象是类的实例. 三大特性: 封装: -- 将内容封装到对象中 -- 将方法疯 ...

  5. apache 自定义404错误页面

    1.有些提供web服务的网站,在用户访问一个不存在的网站文件时,会提示404错误,如下所示: 现在要求自定义一个错误页面,也就是出现404错误代码时,跳转到我们自定义的网址上.下面记录下方法: 1.编 ...

  6. find命令中的print0和xargs -0

    看到命令find . -name checkout-cache -f -- 不明白其中-print0和 xargs -0的用法.查了一下,转载一篇备忘. xargs命令的作用是将参数列表转换成小块分段 ...

  7. CentOS7.6安装Nodejs(Npm)

    官网下载地址:https://nodejs.org/en/download/ 第一步:软件下载安装 进行安装目录:cd /opt/software (如果目录不存在,请先创建目录) 下载二进制包:wg ...

  8. Flask之视图(一)

    2.关于Flask 知识点 从Hello World开始 给路由传递参数 返回状态码 重定向 正则URL 设置cookie和获取cookie 扩展 上下文 请求钩子 Flask装饰器路由的实现 Fla ...

  9. 检测客户端系统-PHP

    if(isset($_SERVER['HTTP_USER_AGENT'])) { $userAgent = strtolower($_SERVER['HTTP_USER_AGENT']); $clie ...

  10. C#开发之反射的简单使用

    奋斗的蘑菇 原文C#开发之反射的简单使用 以前在Windows Mobile中写过一个写好的Dll中的图片的例子,现在在项目中有接触到在一个大的窗体中,动态的加载一些窗体这样的需求.将功能按照模块的划 ...