Description

​ SnukeSnuke从他的母亲那里得到了生日礼物——一个网格。网格有HH行WW列。每个单元格都是黑色或白色。所有黑色单元格都是四联通的,也就是说,只做水平或垂直移动且只经过黑色单元格即可从任何黑色单元格移动到任何其他黑色单元格。

第ii行第jj列的单元格的颜色由字符si,jsi,j表示。如果si,jsi,j是 #,该单元格为黑色;如果si,jsi,j是 .,该单元格为白色。至少一个单元格是黑色的。

我们定义「分形」如下:00级分形是一个 1×11×1的黑色单元格.kk级分形由HH行WW列较小一级的分形按照 SnukeSnuke 的网格的样式拼成:与SnukeSnuke 网格中的黑色单元格对应的位置是一个kk级分形;与SnukeSnuke 网格中的白色单元格对应的位置是一个单元格全部为白色,尺寸与kk级分形相同的网格。

您将得到 SnukeSnuke 的网格的描述和整数 KK。请求出KK级分形中黑色单元格组成的连通分量数,模109+7109+7。

Input

​ 第一行三个整数H,W,K如题目描述

​ 接下来H行,每行W个字符

Output

​ 输出KK级分形中黑色单元格组成的连通分量数,模109+7109+7。

Sample Input

3 3 3
.#.
###
#.#

Sample Output

20

HINT

本题采用subtask。

真的抱歉部分分一拖再拖……

  • 存在5%5%的数据满足黑色方块与边界不相连。
  • 存在10%10%的数据满足KK级分形的边长≤2000≤2000。
  • 存在50%50%的数据满足黑色方块与四边界相连。

对于所有数据:

  • 1≤H,W≤10001≤H,W≤1000
  • 0≤K≤10180≤K≤1018
  • 每个 si,jsi,j是 # 或 .
  • 网格中所有黑色单元格四联通
  • 网格中至少有一个黑色单元格
.............#.............
............###............
............#.#............
..........#..#..#..........
.........#########.........
.........#.##.##.#.........
..........#.....#..........
.........###...###.........
.........#.#...#.#.........
....#........#........#....
...###......###......###...
...#.#......#.#......#.#...
.#..#..#..#..#..#..#..#..#.
###########################
#.##.##.##.##.##.##.##.##.#
.#.....#..#.....#..#.....#.
###...######...######...###
#.#...#.##.#...#.##.#...#.#
....#.................#....
...###...............###...
...#.#...............#.#...
.#..#..#...........#..#..#.
#########.........#########
#.##.##.#.........#.##.##.#
.#.....#...........#.....#.
###...###.........###...###
#.#...#.#.........#.#...#.#

这个是第一个样例的样例解释

第二个样例:

3 3 3
###
#.#
### OUTPUT:1

第三个样例:

11 15 1000000000000000000
.....#.........
....###........
....####.......
...######......
...#######.....
..##.###.##....
..##########...
.###.....####..
.####...######.
###############
#.##..##..##..# OUTPUT:301811921

Sol

%%%DTZ

其实这题不是很难想,但是看起来太神了觉得不是很可做所以当时就索性放弃了QWQ

Code

#include <bits/stdc++.h>
using namespace std;
#define P 1000000007
int n,m,x,y,z;char s[1005][1005],t[1005][1005];long long k;
struct M
{
long long m[5][5];
M(){memset(m,0,sizeof(m));}
M operator*(const M &b)const
{M c;for(int i=1,j,k;i<=2;i++) for(j=1;j<=2;j++) for(k=1;k<=2;k++) (c.m[i][j]+=m[i][k]*b.m[k][j])%=P;return c;}
M operator^(long long x)const
{M a(*this),ans;for(int i=1;i<=2;i++)ans.m[i][i]=1;for(;x;x>>=1,a=a*a) if(x&1)ans=ans*a;return ans;}
}ans;
int ksm(int x,long long y){int ans=1;for(;y;y>>=1,x=1ll*x*x%P) if(y&1) ans=1ll*ans*x%P;return ans;}
bool chk(){for(int i=1;i<=n;i++) if(s[i][1]=='#'&&s[i][m]=='#') return 1;return 0;}
void turn90(){for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) t[m-j+1][i]=s[i][j];swap(n,m);memcpy(s,t,sizeof(s));}
int main()
{
scanf("%d%d%lld",&n,&m,&k);
for(int i=1,j;i<=n;i++) for(scanf("%s",s[i]+1),j=1;j<=m;j++) x+=s[i][j]=='#';
bool a=chk(),b=(turn90(),chk());turn90();
if(a&&b) return printf("1"),0;
else if(!a&&!b) return printf("%d",ksm(x,k-1)),0;
else if(b) turn90();
for(int i=1;i<=n;i++) z+=s[i][1]=='#'&&s[i][m]=='#';
for(int i=1;i<=n;i++) for(int j=1;j<m;j++) y+=s[i][j]=='#'&&s[i][j+1]=='#';
ans.m[1][1]=x,ans.m[1][2]=y,ans.m[2][2]=z;ans=ans^(k-1);
printf("%lld",(ans.m[1][1]-ans.m[1][2]+P)%P);
}

[AGC003F] Fraction of Fractal 矩阵快速幂的更多相关文章

  1. 题解-AtCoder-agc003F Fraction of Fractal(非矩阵快速幂解法)

    Problem AtCoder-agc003F 题意:给出\(n\)行\(m\)列的01矩阵,一开始所有 \(1\) 连通,称此为\(1\)级分形,定义\(i\)级分形为\(i-1\)级分形中每个标示 ...

  2. [AGC003F] Fraction of Fractal(矩阵乘法)

    Description Snuke从他的母亲那里得到了生日礼物--一个网格.网格有H行W列.每个单元格都是黑色或白色.所有黑色单元格都是四联通的,也就是说,只做水平或垂直移动且只经过黑色单元格即可从任 ...

  3. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  4. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

  5. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

  6. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  7. HDU5950(矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...

  8. 51nod 1126 矩阵快速幂 水

    有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...

  9. hdu2604(递推,矩阵快速幂)

    题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...

随机推荐

  1. Array.prototype.slice用法详解

    slice方法是定义在js数组原型中的方法,用于截取数组的部分元素,具体使用如下: arrayExample.slice(start, end); start为起始元素位置,end为截止元素位置,如: ...

  2. Unity内存优化

    [Unity内存优化] 1.在Update方法或循环中,少用string类,因为string类的每次操作都会调用new生成新字符串对象.用StringBuilder代替string,StringBui ...

  3. Spark分布式计算执行模型

    引言 相对Hadoop, Spark在处理需要迭代运算的机器学习训练等任务上有着很大性能提升,同时提供了批处理.实时数据处理.机器学习以及图算法等一站式的服务,因此最近大家一起来学习Spark,特别是 ...

  4. 云计算 Restfull API 设计之旅

    http://fedoraproject.org/wiki/Cloud_APIs_REST_Style_Guide#Introduction_to_REST   http://docs.spring. ...

  5. SQL 数据库 学习 007 通过一个示例简单介绍什么是字段、属性、列、元组、记录、表、主键、外键 (上)

    SQL 数据库 学习 007 通过一个示例简单介绍什么是字段.属性.列.元组.记录.表.主键.外键 (上) 我们来介绍一下:数据库是如何存储数据的. 数据库是如何存储数据的 来看一个小例子 scott ...

  6. RenderPage()加载局部页和传递数据

    System.Web.WebPages.WebPageBase类的方法public override HelperResult RenderPage(string path, params objec ...

  7. toolbox类

    新建Qt  应用,项目名称为“c”,基类选择“QWidget”,取消“创建界面”复选框的选中状态. 添加该工程的提供主要显示界面的函数所在的文件,在“c”项目名上单击鼠标右键,在弹出的快捷菜单中选择“ ...

  8. SourceInsight中 加namespace宏后,无法跳转问题解决

    Option->preferences->languages: C++ language->special, checked Ignore namespace declaration ...

  9. 一个简单的编译tex的Makefile

    tex编译成pdf通常要经过以下步骤:tex-->dvi-->ps-->pdf.如果修改了tex文件想看一下效果,就要把命令重新敲一遍.虽然就几行命令,反复敲还是很烦人的.最直接的办 ...

  10. ArcGIS API for Javascript 图层切换渐变效果实现

    在一个WebGIS系统中往往要实现图形的切换,比如业务图层的切换,以及底图的切换等等,可以通过控制图层的可见性来实现.比如通过设置图层的opacity .visible来控制,前几天有网友聊天的时候提 ...