第一次广搜!HDU1548--A Strange Lift
一上来看见题目就用了深搜(因为只会深搜)果断内存超限(据说时间也会超限)无奈只好开始用广搜
其实广搜的思路和深搜有很多类似的地方 不过实现的过程中用到了队列 因此有点难以理解(好吧我个人认为)
这题是最基本的广搜了 只是一个二叉树
所以先画个二叉树出来看一下广搜的顺序
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABB0AAAKVCAIAAAAMVARGAAAgAElEQVR4nOzde1TU973/e/47pzknca/VvdZZ69fdNj1rnd10n5vpWrtdv2ad1V/aGEURZoY7tmlstUk1aWI0chOQOyiEESKgNDgwgMhFuSkX5SIoKBKgI1QUHcE7IqBIBsG5nD9IjRuR21w+35l5Ptb7nxqFj/P5fsvn5ff7/nxcTAAAAABgHhfRAwAAAABg98gVAAAAAMxFrgAAAABgLnIFAAAAAHORKwAAAACYi1wBAAAAwFzkCgAAAADmIlcAAAAAMBe5AgAAAIC5yBUAAAAAzEWuAAAAAGAucgUAAAAAc5ErAAAAAJiLXAEAAADAXOQKAAAAAOYiVwAAAAAwF7kCAAAAgLnIFQAAAADMRa4AAAAAYC5yBQAAAABzkSsAAAAAmItcAQAAAMBc5AoAAAAA5iJXAAAAADAXuQIAAACAucgVAAAAAMxFrgAAAABgLnIFAAAAAHORKwAAAACYi1wBAAAAwFzkCgAAAADmIlcAAAAAMBe5AgAAAIC5yBUAAAAAzEWuAAAAAGAucgUAAAAAc5ErAAAAAJiLXAEAAADAXOQKAAAAAOYiVwAAAAAwF7kCAAAAgLnIFQAAAADMRa4AAMf3cGLy7shj7Z3Rrv475y/drG6/UtXWp6r5OrPyQrT69K7shq2pxz9IqfggpeJPSRV/TCr3jDgsDy+YKY+w/Le3/e35kv3zP8nDCzwjDv8xqXxTcsXMH9+aenxXdkNkTmNm5QVVzddVbX3V7Vdaewe7+u/033pwd+Txw4lJ0R8GAMAqyBUA4AhGxnX9tx609g7OBIbY/NMfpx3fEFfqFqJ+e9vf1gTmuoXmy3YXKaJKFTHlnrGVHnHV7nE1ssR6eVKTZ8oZL2XbTPmkXfBL73y+/DM1G7J6ny//TM2s3+OTduHZV/BMOStPapLvaXCPq/GIr/GMrfSKrVBElcp3l7iF5q8NVr+97W/rgtX+McUfpx2PymlU1XxdcfZSa+9g343h+2MToj9IAMAykSsAwJ7oDYbBobEWzcCRBk1s/umNe47JwwtmkoMs4ogi+pgitso9rka2p8Ez5Yx3artfRvesVCCF8svo9klr90w5K9vT4B5X4xl3XBF9TBZxZCZ1yMMLNu4pi8ppLDjV3aIZ0N4Z1RsMoj94AMACyBUAIF0PJyY12nsVZy/tO3ruky+rvSOPrNpxyCO80DOmzCOuWr6nwUvZ5pfeuSGrR3hUsFz1+KV3eqeek+1p8Iir9owp8wgvXLXjkHfkkb9+WZ1cfLbi7KWu/ju8TwUAUkOuAAAJuTvyuEUzcKDywrb0Gvdd+WtD8hTRx2SxJ2SJ9Z4pZ333fy160S+s/NI7PVPOyhLrZXEnFNFlbqH5bsHqv35ZfaDyQlO39tbwI9FTBwDOjlwBACJp74zWdfQrS1o/VFa6Bua4heZ7xpR5xNd6ppzxz5TiK0zSKf9MjZeyVRZ/0jOm3C20wDUwZ1NSmbKktbr9Sv+tB7w6BQA2Rq4AAJvSGwy9A0Mlp3u2Z9a6Buas31WgiCmXxZ/0Ura+2CFNLSNmKGLK1+8qWL1T9de04wWnunsHhsgYAGAD5AoAsLqZLFFwqvuvacdX71S5hxXKYo8rkk9Ls6naMcovo1uRfFoWe9w9rHAmY6jrurr670w91Yu+HADAMZErAMBabg0/KjndszW1kiwhtvwzuxXJLR6xxz0iit7Znv2hsrLgVDctGQBgWeQKALAwjfbegcoLvlFFawJz5TGViuRmsoR0yj9To0hulsdWuQapvXYXfll2XqO9x4tSAGA+cgUAWIDuyXSLZiBafXpdsNo9vFAWX+Odek74Gpqav7xTz3nE1XiEH1kblBt+qKGpW6t7Mi36UgIAe0WuAIDl0xsMLZqBnQfr1gTmyCJLZYn1fumdwpfL1FLLL71LvqfBI/Lo6p2q7Zk1Td1a2jAAYKnIFQCwHH03hpOKzq4NypVFlsj2NAQcYCsnR6iAAxp5UpMssnRtsDq+oFmjvSf6QgMAu0GuAIAluD82kVvb5RtV5BZaIEuo4+mEo5Zfepc8oc49vNBrd+FXJzpo8gaABZErAGBRWjQDH6VWuQblymKr6J1wnvJObVfEn1gTmPvBF+VN3Vo6vAHgZcgVADCfqaf6irOXfCILZbuLFMmnAw5eFL7SpURUjyK5Wb67xDuysOR0D+3dAPAicgUAzG1kXHew6sL60DzPmDIeUFAz5Z3arogpXxes/rLs3Mi4TvRFCgASQq4AgNluDT+KL2heG5TrGV/tu/9r4WtZSmrll94lj692DczdrWrov/VA9AULAJJArgCA74yM66LVTW6h+YrEk/6ZbPFEzVcBBzTyPfWuQepodRON3QBArgAAk8lkeqybyqxsXxuUK0+oJVFQi6+AgxcVCXXrgtXKktaHE5OiL2QAEIZcAcDZTT3VFzX1rA3KlcUe98voFr5Opeyx/DM1srgTbiHqnNouztQD4JzIFQCcWkPnNXl4gUdUOX0UlPnll94pj6lcH5J34vwV0Zc2ANgauQKAk3o4MRmUdXJ9+BHv1Hbh61HKkco7tX19+JHP0mvuj02IvswBwHbIFQCcUU37FbcQtTyhdkNWj/BlKOWI1SNPqF0brC4/c0n0xQ4ANkKuAOBc7o9NfJZesz78iE8ajyko65ZPWvv68CNb91XeHXks+sIHAKsjVwBwIg2d19YG85iCsmX1yBNqXQNzKlv7RF/+AGBd5AoAzuJQTeeawFweU1C2L5+0drfQgvTydtE3AQBYEbkCgOPTGwy7VQ1uYUfYRpYSVf6Z3R67SwIP1uqeTIu+IQDAKsgVABzcw4nJPyeXe0SVBxzgtDtKbPXIYyo37jk2Mq4TfVsAgOWRKwA4ssGhMZ+oInlCregFJUV9W4qEOnl4weDQmOibAwAsjFwBwGHdH5tw35WvSD4tfClJUc+XIrnZfVc+0QKAgyFXAHBMI+M636gixZ564YtIinqxvL5oUYQX8EIUAEdCrgDggHRPpv+4t8wjrkb48pGiXlbyPfX+0UWPdVOibxcAsAxyBQBHozcYPlRWesRUCV84UtT85RF7/M/J5ewQBcAxkCsAOJpo9WmPqHJOvqPsojyiyoOzToq+aQDAAsgVABxKV/8d1+A8/0y2lKXsowIOXlwXWtDUrRV96wCAucgVABzH1FO9IqJAkdwsfLFIUYsvL2WrR1g+jRYA7B25AoDjSCs7t373MeHLRIpaasljKhMLm0XfQABgFnIFAAfRf+vB6sAcv/Qu4WtEilpq+Wd2rwnM7eq/I/o2AoDlI1cAcBA7DtR4xNcJXyBS1PJKvqdh675K0bcRACwfuQKAI3g4MbkmMMc/s1v46pCillcBBy++u1N1f2xC9M0EAMtErgDgCI4298qiyoUvDSnKnFLEVeXWdom+mQBgmcgVABzBxj3HPFPOCl8XUpQ55Z16zi+6SPTNBADLRK4AYPcGh8bWheQJXxRSlPnlEVHYOzAk+pYCgOUgVwCwe1VtfbLYE8JXhBRlfikSaktO94i+pQBgOcgVAOze/vLzsviTwleEFGV+yfc0KEtaRd9SALAc5AoAdi8o6yRnbFOOUZ4pZ7Zn1oq+pQBgOcgVAOzeewlHfdLaha8IKcr88km7sCGuVPQtBQDLQa4AYPdcA3P8MzXCV4QUZX75Z2pcA3NE31IAsBzkCgB2j1xBOUyRKwDYL3IFALvHe1CUwxTvQQGwX+QKAHZv58E6RXKL8BWhFGqTslX4GChzyjPlLH3bAOwUuQKA3WOf2ZkiVDhAyfc0JBedFX1LAcBykCsA2L2Ks5c4F2+TsvWT+Frhw6DMLEVi7ZEGjehbCgCWg1wBwO5p74y6heYLXxGKrejt2cLHQJlf8t1FGu090bcUACwHuQKAI/hdfKmXsk34olBURW/P5iUoByiftHZFRIHomwkAlolcAcARFDf1yGMqha8LhVT0jkNBYaXCh0GZX4q4E9nVHaJvJgBYJnIFAEcwMq5b9fkhJzzFYpOyVeUXLHwYlPkVcPDi6p2qW8OPRN9MALBM5AoADmJbeo0ssV746tDGVeTxkfAxUBYpeVLTh19UiL6NAGD5yBUAHETvwNDqnSq/jG7hC0SblcovmD2gHKP8MzWuQerzl26Kvo0AYPnIFQAcR1LRWY+ocuFrRNtU0ta0HN8g4cOgLFKy2KqonEbRNxAAmIVcAcBx6J5My8LyPVPOCF8mWrs+ia9tfEshfBiURco79ZxbsPrhxKToGwgAzEKuAOBQWnsH14bkBRxw8Abunp/+go1lHaV63EIP13X0i751AMBc5AoAjiY466Rjvw3V+JY8aWua8GFQFilF3IntGTWibxoAsAByBQBHo3sy/efkco/Y48KXjNaojI2xx1e9J3wYlEXKM7FuQ1yx7sm06JsGACyAXAHAAT3WTflHF8n3ONq2s0Fhpdof/Yw3oByjFHsb/aOLRsZ1om8XALAMcgUAxzQyrlOEF3h90SJ8+Wip2qRs1f7oZ9E7DgkfCWV+eaeckYUXDA6Nib5RAMBiyBUAHNbg0Jj7rnxFsoNEi/M/X1Xszil4jlBeyrb1IWrtnVHRtwgAWBK5AoAjGxwak4XlK+z/hagc36DrP3xD+DAo88szqVEWlq/R3hN9cwCAhZErADi4kXHde/Gl8tiqDVk9wteUy6ugsNKJ770aFFYqfCSUedXjmVjjH110a/iR6NsCACyPXAHA8emeTAcerPXYXeKf2S16Zbnk2qRsnXjlNY7WtvcKOKCRRx37dP9xdn8C4KjIFQCcgt5g+LLsvFtogU/aBeFLzCXVxTd+2fPTXwgfBmVO+aV3uocXJh5u1hsMom8FALAWcgUAJ1J+5tLaYLUi8aS9vBNV7P7RxPde/SS+VvhIqGWX196GtcHq4qYe0Zc/AFgXuQKAc7k78njrvkqPiCLf/R3CV5zzV/SOQyYXF47Wtt/yS++UR5ZuTipjP1kAzoBcAcAZHW3ulfiDi0/iaydeea39zXeEj4RaXs08piis1/DuEwAnQa4A4KQk/uBC+6OfDX3/BxytbY/lu/9rHlMAcELkCgBOrfzMJY+wfHlMpV+GhLaKOr7qPZOLC0dr2135ZXR7xlevC1YXN/XwmAKAsyFXAHB2j3VTX53oWBOYo0is9c/UCF+bZmyMNbm4HF/1nvCRUIuvgIMXPRPr1gWrvyw791g3JfqiBgAByBUAYDKZTCPjusTCZtegXMWe+oCDF0UtT4PCSideee36D9/gDSj7qR7F3ga30PxoddP9sQnRFzIACEOuAIDv3Bp+FJR10j3ssGJvg+3TxSZlq/ZHPzO5uHC0tl1UwMGL8qSm9bsKtmfUaO+Mir54AUAwcgUAzNZ3Y3jnwdp1wWp5Qq0t+y4a35KbXFyK3T8SvmKm5i//zG55Qt3aYPVn6TVd/XdEX7AAIAnkCgCY263hR8qS1rXBakVslU9au7WXqjm+QSYXF47Wlnj57u+Qxx1fE5iTWNjCdk8A8DxyBQDM57FuKv9kt3tonjyq1DPljJVWq0FhpSYXF47WlnJ5KVsV0WXrQ/K+OtExMq4TfWECgOSQKwBgYXqDoa6j//3Eo+tC8uQJtZY98mKTsnXoX//N5OKS4xskfPVMzSrf/V8rEmvdQvM3xBVXtfVNPdWLvhgBQKLIFQCwBP23HnxZds4jLF+2u0ixp94/0wLdFxff+KXJxYWjtSVV/pka+Z4GRWTJuuDcfaWtfTeGRV96ACB15AoAWDK9wdBx+fZuVYNrYI5nbJkiuWXZm0cVu3808wYUG8tKo3o8U84oYsrXBKp2ZZ9q7R3keDsAWCRyBQAsn+7JdF1H/0epVe/uVHnFVsiTmpb0BCN6xyGTi4vJxSVpa5ro9bRTl3+mRp7U5BlbuXqn6i/Kyqq2Pt2TadEXFwDYGXIFAFjAw4nJ6vYrQVknXQNz5LtL5Al1C/ZgbFK2TrzymsnFpelXMuELa+cs3/1fy+JPKqJK3/1c9Vl6TVVbHw3ZALBs5AoAsKSpp/rzl24mFjbLwvLdQgs8Yo97ppwNOKB5cVE7cwTe0Pd/wBtQtqyAgxe9lG2yuBNuoQXrQ/LiC5pbNAN0YwOA+cgVAGAtfTeGs6s7/ri37J3t2bKIYo/4mmcZ4/iq92begIrecUj4UtvhayZLyBNqFVGlq3Yc+l1cycGqCxrtPdEXCAA4FHIFAFid7sn0+Us3Myvb/7S37J3t2XF+O2dCRdH6LcLX3I5aAQc0niln5Qm18t0l72zP/tPesi/LzrVoBh7rpkRfDgDgmMgVAGBTuvMXnr62wuTicuMH//vqnSr57iLv+OOyxHrv1PZlbypFbcjq3ZDV45PWLtvT4J1QLd9d9M727E17yw5WXTh/6SZN2ABgA+QKALAd4+io8c03Zx5WGLu6pp7qu6/d3V3SE3e45ffxpe9sz5bvLvJJIGYsqgIOXvRObZcl1vskHFdEFq3emfP7+NLYvKaS0z05zQP3HtKBDQA2Ra4AANsxbtz4bahQKmd+Jav5dlLtDb3BaDKZ9AZD/60HVW19+0pbNyeVuwbmyHcX+cRVKhJr5UlN3qnn/DPn6P92kvLP1HintiuSTysSa33iKuW7i1wDczYnlX9RfLaqra//1oPne6+zmm8XdwyJmWMAcFbkCgCwEaNK9W2oePvtmV+p6B4OLLk6Of3Sk9duDT9q7R080qBJLGz5c3L5umC1a2CuIrLYO65SkVCnSG72SWt3vLDhn6nxSWtXJDcrEup8Eo57Rpa4BuauC1b/aW9ZfEHzkQZNi2ZgcGhsno9aO6zbknd5Jq0BAGyDXAEAtmDs6vo2VKxYYdRqTSZTx8D4lrzLIxNLe/X/sW6qd2CorqP/YNWFkK9OBcQVr96pemd79vpd+d4xR33jq7z31MgSTymST3sp2/zSOzdk9QjPCXNVj196p3fqOUXyaVniKe89tb7xVd4xRz3CDr+7U7V6pyogtjjwYO3BqgvV7Vd6B4YeTkwu9QOPKNe2Xn201D8FAFg2cgUAWJ1xdNT4k598myvKykz//Ad17bBlegB0T6ZvDT/q6r9T3X6l4FT3l8faQr469efkcs+Igt9+9tXaoNz1u/K9ooo9o0t94yu946p89tbKE2plifXypCbPlDNeyjbf/R1+6Z0v1pwnb2zI6g04oJnz9/vu7/BStnmmnJUnNcn3NMgTan331nnHVfklVHpGl3pHlazflb82KPftbX/zjCj4c3J5yFen9pW2Fpzqrm6/0tV/Z3BozFI91q1XH0WUay3ypQAAi0GuAACrMyoU34YKudxkMo1MTG/Ju3xea6N/TR8Z190dedx/60FX/53W3sHq9itVbX2qmq9VNV9Hq5sicxq37Kv6IKVipnwii+ThBc/X6p05b2/72/O1eqdq1u/xjSp69hW27KuKzGmMVjd9daJDVfN1xdlL1e1XWnsHu/rv9N0Yvjvy2DZnWusNRgsmNwDAgsgVAGBdxsjI796AGh2dnDaEHL1W0T0selyOr7hjKKv5tuhRAICzIFcAgBUZGxtnQoXJxcXY2Kg3GJNqbxw4zWLXFh7qnv5JdWl8Ur/wbwUAmI1cAQDWYhwdNf7Lv3wbKrZtM5lM6ra7MVUD7FNkM1823OTREADYBrkCAKzF+JvffBsqVq40jo6e+sfo58VXv5nin89tp39I92nhFYIcANgAuQIArMK4bdt3b0B1df395uMteZdvjz0RPS6nE3L0WsfAuOhRAIDjI1cAgOUZy8q+CxWRkbfHnmzO6fvHnQnR43JGjX1j8ScGRI8CABwfuQIALMyo1X7XVrFy5UPd008Lr5y+PN/50LCeab3xQ3UfT4oAwNrIFQBgScbRUeObbz7bWHaq/1pEuba4Y0j0uJxawbl7qrN3RY8CABwcuQIALMm4ceN3b0AplV823Nx36qboQTm7++PTm3P66JgHAKsiVwCAxRhVqu9ChVxe3DEUUa6dnDaIHhdMX9TdqOsdET0KAHBk5AoAsAxjV9d3bRUrVrR2DHxccOWh7qnoccFkMpn+fvPx58VXRY8CABwZuQIALMA4Omr8yU+ePay4eejI5py+m6P0CkvI58VX/37zsehRAIDDIlcAgAUYFYpnoeKbDe9tybvMElZq6npHkmpviB4FADgscgUAmMuoVD4LFYbXXw879DWv8kvQ5LRhc07f/fFp0QMBAMdErgAAsxgbG5+FCpOLS258IVuaSpbq7N2Cc/dEjwIAHBO5AgCWzzg6+qxX2+TicuGPOxKrB/UGo+hxYW4zB59P65kgALA8cgUALJ/xN795Fioe/vT/Ciy5yq6yEpdYPdjYx9nnAGB55AoAWCZjZOTzb0DFxpaNTPDuvtR1DIyHHL0mehQA4IDIFQCwHMaysudDRdHvQvqHdKIHhYXpDcZPC6/03f1G9EAAwNGQKwBgyYxa7fNtFX3/8cvz2keiB4XFqtI8+LLhpuhRAICjIVcAwJIZ33zzWajQvfJqTWWH6BFhCb6Z0v9JdYmj0AHAssgVALA0xo0bn38Dqjo2W/SIsGRZzbeLO4ZEjwIAHAq5AgCWwKhSPR8qLv331ewqa48GHkxuybvM3AGABZErAGCxjF1dz7dV6F559dGdYdGDwjJFVV5vvUpXDABYDLkCABbFODr6fFuFycXlfmWd6EFh+VqvPooo14oeBQA4DnIFACyKUaF4PlQ8+PNHokcEs+gNxi15l7XD7A4MAJZBrgCAhRmVyudDhe4HPzKOjooeFMx1rHM4q/m26FEAgIMgVwDAAoxdXc+HCpOLi7GrS/SgYAEPdU//pLo0PqkXPRAAcATkCgCYj3F09PlebZOLizEyUvSgYDFfNtys6Kb5HgAsgFwBAPMx/uY3z4cKw/+7UvSIYEn9Q7pPC6+w4SwAmI9cAQAvZYyM/C9PKlasMGrZQcjR7Dqm7RgYFz0KALB75AoAmJuxsXF2W4VSKXpQsLzGvrH4EwOiRwEAdo9cAQBzMGq1s9sq3n5b9KBgFdN644fqvttjT0QPBADsG7kCAOYw6wg844oVbCzrwArbh1Rn74oeBQDYN3IFAMxm3LZt9htQZWWiBwUruj8+vTmn75spNpwFgOUjVwDAf2FUqWaHivffFz0oWN0XdTfqekdEjwIA7Bi5AgC+Y+zqmt1W8frrvAHlDC7emvi8+KroUQCAHSNXAMC3jKOjs9oqTC4uxsZG0eOCjQSWXP37zceiRwEA9opcAQDfMm7cODtUbNsmelCwnbrekaTaG6JHAQD2ilwBACaTyWRUKmeHipUcre1cJqcNH6r77o9Pix4IANglcgUAmIxdXbNChcnFxdjVJXpcsDV1292Cc/dEjwIA7BK5AoCzM46OGn/yE47Whslkuj32ZHNO37TeKHogAGB/yBUAnJ3xN7+ZHSo4WtuJJVYPNvaNiR4FANgfcgUAp2aMjJwdKlasMGq1oscFYToHx0OOXhM9CgCwP+QKAM7L2Ng4R1uFSiV6XBDs08IrfXe/ET0KALAz5AoATso4OjrrCDyTi4tRLhc9LohXpXnwZcNN0aMAADtDrgDgpOY4Am/FCo7Whslk+mZK/yfVpYe6p6IHAgD2hFwBwBkZt22b4w0ojtbGP2WfuVPcMSR6FABgT8gVAJyOsaxsjlDB0dp4zsCDyS15l/UGNpwFgMUiVwBwLsaurjnaKl5/nTegMEtU5fXWq49EjwIA7Aa5AoATMY6OvthWwdHamNN57aOIcnYcBoDFIlcAcCLGjRvnCBWRkaLHBSnSG4xb8i5rh3WiBwIA9oFcAcBZGFWqOULFypWixwXpOtY5nNV8W/QoAMA+kCsAOAVjV9ccoYKjtTGvh7qnm3P6xif1ogcCAHaAXAHA8RlHR40/+ckcuUKpFD00SF16462K7mHRowAAO0CuAOD4jArFHKHi7bdFjwt2oH9I92nhFTacBYAFkSsAODhjZOTcb0CxsSwWZ9cxbcfAuOhRAIDUkSsAODJjY+OLocLk4mIsKxM9NNiNM/0P408MiB4FAEgduQKAwzKOjupXzD4Cz+TiYnz/fdFDgz2Z1hs/VPfdHnsieiAAIGnkCgAOa/p/vD1HqOBobSxdYfuQ6uxd0aMAAEkjVwBwTNOffDr3G1CNjaKHBvszMjG9Oafvmyk2nAWAlyJXAHBA+qPH5g4V27aJHhrs1b5TN+t6R0SPAgCki1wBwNEYtdqpV1dwtDYs6+Ktic+Lr4oeBQBIF7kCgEMxjo6O/8f/M/fDiq4u0aODfQssufr3m49FjwIAJIpcAcChjPj+fu5QwdHaMNupf4wm1d4QPQoAkChyBQDHMZqeNXeo4GhtWMLktOFDdd/98WnRAwEAKSJXAHAQ420XvvlfXpv7aG2tVvTo4CDUbXcLzt0TPQoAkCJyBQBHMDU8Mvq//XDuhxUqlejRwXHcezS1OadvWm8UPRAAkBxyBQBHcPX/c507VMjloocGR5NUe6Oxb0z0KABAcsgVAOxe146YuUPFihUcrQ2L6xwcDzl6TfQoAEByyBUA7Jsmr2rOUGFycTGWlYkeHRzTZ0f6++5+I3oUACAt5AoAduzypVsTr8zRq83R2rCq6osjXzbcFD0KAJAWcgUAe3Xv0VTf//nf5w4Vr7/OG1Cwnm+m9H9SXXqoeyp6IAAgIeQKAHZpctpQ4/PJS9+A4mhtWFn2mTvFHUOiRwEAEkKuAGB/9AZjcdjBl4aKyEjRA4Tjuzn6ZEveZb2BDWcB4FvkCgD253Bhm+5/fUlbxcqVokcHZxFTNdB69ZHoUQCAVJArANiZKs2Dmz/5j5duLMsbULCV89pHEeUc5Q4A3yJXALAnnYPjrb/2fOkbUEql6AHCiegNxo8LrmiHdaIHAgCSQK4AYDcGHkwe+nP8S0PF22+LHiCcTkX3cFbzbdGjAABJIFcAsA8PdU9jY8uevvYvHK0N6Xioe7o5p298Ui96IAAgHrkCgFYgihoAACAASURBVB2YnDZEq7tG3/i/OVobUpPeeKuie1j0KABAPHIFAKnTG4xf1N24+v+5vjRUyOWixwjnpR3WfVp4hQ1nAYBcAUDqCtuHqjeHvzRUcLQ2RNt1TNsxMC56FAAgGLkCgKQ19o3tTSx/WagwubgYGxtFjxHO7kz/w/gTA6JHAQCCkSsASNfFWxN/TT9vWDF3r7bJxcW4bZvoMQKmab1xS97l22NPRA8EAEQiVwCQqNtjTz5U9z1+69cvDRUcrQ3JKO4YUp29K3oUACASuQKAFD3UPf3sSP+1j4PnewOKo7UhGSMT05tz+r6ZYsNZAM6LXAFAcvQGY1Tl9ZPpR+cLFZGRoocJ/Bf7Tt2s6x0RPQoAEIZcAUBy0htvZeWeMf7Ly9sqOFob0tN395vPi6+KHgUACEOuACAtpV/fDzl6zbDyzZeGihUrjFqt6GECcwgsufr3m49FjwIAxCBXAJCQ1quPtuRdnvz4k/negFKpRA8TmNupf4wm1d4QPQoAEINcAWBhI+M6jfZeVVvf/vLzu7IbtqYe//MXFb7RRfLwgjWBqre3/W1NoEoeXuAbXfTnLyq2ph7fld2wv/x8VVufRntvZFy3+G/U2Dd2/8us+UIFR2tDwqb1xg/VfffHp+f/bY91U70DQ9XtV5RH20K+qv+LsnLzFxXekUXy8IJ3P1e9ve1v736ukocXeEcWbf6i4i/KypCv6pVH26ra+noHhh7rpmzzdwGApSJXAJjDyLiuvvNaYmHz7+JLV+/MWROYK9tdLIutksWf9Ew546Vs804955fe6ZfeGXDw4oas3oCDF2f+p3fqOS9lm2fKGVniKVlslSKqdG2wevXOnN/FlyYWNtd3Xps/Zhi7uuZrq1ixgqO1IXEF5+4VnLs36xcf66ZaNANJRWc3f1HhFqJeE5TrEVHkEVPpEV8nT2ryUrZ6Kdt893f4pXcGHNBsyOoNOKDxS+/03d/hpWzzUrbKk5pk8Sc9YiplEcVrAnPXBqs3f1GRXHy2RTNAzAAgHeQKAN+aeqpv7R3cV9r6u/jSVZ+rFNHHPOLrvFPP+WdqNmT1mlP+mRrv1HZZ4ilF9LFVn6t8o4pmMobuyX/5Z13j6KjxzZe2VZhcXIxlZaI+HGCR7j2a2pzTN6036p5Mn790c3/5+fcTj737uUoeVSZLrPdOPeef2W2JG+qcfE+DIqbs3c9VAbElXxSfbdEMzLqhAMDGyBUATBrtvfiC5tU7VbLdxbL4Wi9l28xTCOtUj3fqOfe4Go+I4tU7c6JyGjsu354ZhnHjxvlCBUdrw06EHe3fln3u3Z0q94ji9bE1Xsq2DVk91r6h3COK392pCvnbyfOXbuoNBtGfAQBnRK4AnNfdkccHKi/IwwvWhRbIEup8939ttaXP3OWX3uURX+ceXuixK79502fzhYrXX+cNKEjcreFHByoveOzKl8VU+Wd0+6V32fqGyuiWJZ5aH3bEIyw/vbx9cGhM9EcCwLmQKwBn1H/rQWj2qTVBuR6xx71Tz9l49fNi7QjMmydUcLQ2JK6r/85HqVX/vKHahd9QPmntHrHHXYPUf1FWdvXfEf3xAHAW5ArAuXT139mWXuMapJbvqTe/ccIitUnZOvSv/8bR2rBHXf13/qKsdAstkCc1WfNlp+VVjzypyS20gHQBwDbIFYCz6B0YmlkAyfY0WLN9Ysl18Y1fzhcqVq4U/ckBc5B2oiBdABCAXAE4vocTk/EFza5BagkugIrdP5onVDz+n17JiDq4pBMwAGu7PzaxK/uUW2i+BG+oBdPF9oyauyOcCA7AKsgVgIOrbO1zC1HL4k5I5K2n5yt6x6H52ypUPjvlCbVrg9XFTT1scQPh9AbD0ebetUG58oRaST30W0K6SKhbG6zOP9nNDQXA4sgVgMO6Nfzoj3vL1ocX+aRdEL2amaM2KVsnXnltnlDR89NfzPxO3/0dssjS38eX9t96IPpDhfPquzG8cc9RWWSp7/4O4bePOeWX3imLPLohrrh3YEj0hwrAoZArAMd0suOqa2CufE+D8EXMy0r7o5/NEyomvvfqJmXr879fntTkGphbfuaS6I8Wzii7usMtNM/ri9PCbxxLlSK52S00P728nQcXACyFXAE4mqmn+vjDzWtD8n3SxO93+bI6vuq9+d+AStqa9uKf8t3/9fqwI7uyT3GuMGzm4cTktv3V8qhSvwxzz8mWWvlnauRRx7amVtHCBMAiyBWAQxkcGvtdXIlHVHnAAcl1UzyrpK1p84eK9jffedmfDTigkcdU+kQW8k4UbKDvxrBnRIEisdZ++rOXXJ6JdbLwAraKAmA+cgXgODTae2sCc6T87tOGrN6gsNL52yqGvv+DWW9AvVjypKZ1IerW3kHRHzkcWfmZS+uC1Z4pZ4XfNdYuL2WrW2he/slu0R85APtGrgAcREPntdWBOV4LrcjF1iZl6/xtFSYXl+gdhxbzpbxTz60JzD1x/oroDx6OaV9pq3v4Eb/0TuF3jW3KL6Nbtrv4i+KztFsAWDZyBeAIipp61gbneadKt6Fiphrfks8fKo6vem/xX813f4drkDq3rkv0xw+HojcY4gua3SOKpfwyoTUq4IBGHnUs9KtTRAsAy0OuAOxeenn7utDD0t/7MmNj7Pyh4voP31jq1/TL6F4XeviL4rOiJwEOQm8whH51ShEj6Q4la1aPIqZ82/5qtkYAsAzkCsC+Hai8sC70sPR3qgkKK50/VJhcXILCSpfxlf0zNevDi4gWMJ/uyfTHqVWKmHIH7tJeRPV4xld/mFJBtACwVOQKwI4VN/XYRajYpGwd+td/mz9UFLt/tOyvH3BAsy708KGaTtETAjumNxi27qv0jK8Wfr9IoYgWAJaBXAHYq4bOa65BudJ//WlDVu/5n6+aP1Q8O1p72eWX0b0uJI9T87Bs4YfqFTHlwm8W6ZQ87vjnmbX0WgBYPHIFYJc6Lt9eHZjjk3ZB+OJjwSp2/2j+UDHxvVc/ia81/xv57u9YF5LX1K0VPTmwP/tKW90jip379acXq0ceVZZwuFn05ACwG+QKwP5o74yuDVJ7p54TvexYuKJ3HFqwrSLHN8hS38479dyawJy+G8Oipwj2ZOZ9Qv9M52zUnq8CDmjcw498daJD9BQBsA/kCsDO6J5MB8QVS/zwu5napGyd/wi8+Y/WXl4pkk977j78WDcleqJgH053X3cNynWecyqWWn4Z3W6h+ZWtfaInCoAdIFcAdiYqp9Ejyj7eAr/4xi8XfANqwaO1l1Gy2OM7D9aKnijYgVvDj9YE5vikSf3gF7Hlk3ZhbVBu/60HoqcLgNSRKwB7cuL8Fbeww3axs/7xVe8t+AZU0tY0a3zrgIMX3cOLipp6RE8XJE1vMLyfeFS+p174zSL9UiQ1/S6uhO2hAMyPXAHYDe2d0XXBarvo1U7amrZgqFjS0dpLLb/0zjWBuTRaYB77jp5z331M+M1iLyWPqUgsbBE9aQAkjVwB2Ae9wbBxT5lMYm0Vm5St7W/+9q/xdc//4ifxtQu2VQx9/wfWeAPq+VIkN/vHFLNLJubUcfn22pA8/0ypn/0inQo4oHELLWC/NQDzIFcA9uFoc6/77hLha4tZFb092+TiMvHKa8XuW2d+ZZOyVfujny34sCJ6xyEbDE8WfSzvZLfoqYPkPJyYdN+V76VsE34H2Vd5p7avDcq9PzYhegIBSBS5ArAD98cmpHkEnsov+PlHENE7DjW+JV8wVJhztPaSyi+9c22Q+u7IY9ETCGmJzT/tEce52sspeULdruxToicQgESRKwA7EJx1UhZfI3xJ8WIVeSxw5t2Ldf2Hb9hyhIrEk9v2nxA9gZCQvhvD60Ly7GLzAwlWwMGLbqEFHZdvi55GAFJErgCkrrV30C20IODgReFLihdrwZ1kX9xYNiis1LaD7PGIKKrvvCZ6GiEVf9pbpkg+Lfzesd/yTDlL5xKAOZErAKn7fXypZ8oZ4YuJOWvoX/9tSbnCgkdrL768lG0+UYUsg2AymSpb+9wjioXfOPZenrFlhfUa0ZMJQHLIFYCktWgG3MOPCF9GvKyWFCp6fvoLUeNURJVWt18RPZkQ7LFuyi3EPnZqlnj5pXe6hahHxnWipxSAtJArAEl7P/GoIrlF+DJizprZDGrxb0B9El8raqheyjb/6CLRkwnBDlZdUMSdEH7jOEb57K3bV9oqekoBSAu5ApCurv4760IKhC8gXlYZG2MXnyusdLT24ss9/EiLZkD0lEKYx7qptUG5fuldwm8cxyj/zG7XwBweWQB4HrkCkK4PUirkSU3CFxAvqyVtBtX4llzsaBXJLb+PLxU9pRDmcL1GHlMp/K5xpPKMr86oaBc9sQAkhFwBSFT/rQdrQ/I2ZPUIXz28rM7/fNWS+iu0P/qZtc/Ynr/cwwu7+u+InlgIMPVUvz40j84Ky5Zfeue6YPVj3ZTo6QUgFeQKQKKSi8/KxDUkLKa0P/qPpR5eMfHKazbfZ/a7kiecjFY3iZ5YCHC0uVcWfUz4LeN45RVXlc+R9gD+iVwBSJHeYFgbrPZL7xS+bpinlhoqnlXGxlghA/bL6HYNzNE9mRY9vbApvcHgGXHYO/Wc8FvG8conrX19iHrqqV70JAOQBHIFIEUtmgGP3SXCFw3zVHBYyfJCxfUfvhG945CoYcujjrHhrLPpuHx7fZh0N2u29/KMLm3q1oqeZACSQK4ApGjnwTopd2xvyOpN3pK61ERx//v/LeN9MU8qnpUiufmj1CrR0wubisxplCWeEn7LOGrJk5p2HqwVPckAJIFcAUjOw4lJ16DcgAMa4SuGeWpJm0FNfO/VkvVbhI95Q1ZvwMGLrkG598cmRE8ybGTqqX5NYI5fRrfwa89RK+CAZk1gzsOJSdFTDUA8cgUgOfWd1xQx5cKXC/NX41uKRYaKkvVbxG4DNau84o9XnL0kepJhI/Wd1zwijwq/6hy7FDHlVW19oqcagHjkCkByInMa5XsahK8V5q+Lb/xywURx+lcef42vEz7U2Wug5NO8tuE8tmXUSPyVQgcoz5Qzf04uFz3VAMQjVwCSIw8v8N3fIXytMH/Nnyh6//0/Be4nO3/5ZXSvCVTpDQbR8wyrezgxuTowJ+DgReFXnaNXD68XAjCRKwCpGRwacwvNE71KWKA+ia+V5nZPiyyPiMLegSHRUw2rq++8pogpE369OUN5xlay0xoAcgUgLRVnL8ljKoWvEuav6O3Z0tzuabFroPhqdV2X6KmG1SUcbmYnKNuUPKkpMqdR9IQDEIxcAUjLjgN28Dr4rM2gpLPd0yJLkdyydV+l6KmG1flEFvmktQu/3pyh/NI75eEFoiccgGDkCkBavHYX+qRdEL5KmL+qVv1Bsts9LWoNlNG9LlgteqphXSPjunc/Vwm/2JynXIPUd0cei552ACKRKwAJ0RsMv/0se0NWj/Alwvw1sxmUNLd7WmStCcx5rJsSPeGwovrOa4roY8KvNOcpRUw5LRaAkyNXABIyODTmvuuw8PXBgtX+5m8lu93TIku+u6jvxrDoCYcVJRY2e9ht7rXHku9poMUCcHLkCkBCWnsHPdm+xiblE19V33lN9ITDijbuOeZlb2/o2XX5pLX7xxaLnnYAIpErAAkpOd3jEV8jfH3gDKVIqGNLKMe2Lljtl94l/Epzngo4oHlne7boaQcgErkCkJC4ghbpbwblGKVIbgk/1CB6wmEtj3VTq2jatnlxOh7g5MgVgIQEZp3yUrYJXxw4Q3kp2z5IqRA94bCWvhvDHhFFwi8zZyvZ7uLzl26KnnwAwpArAAn5IKWCXGGb8km7QK5wYPWd12RR5cIvM2credzxYy29oicfgDDkCkBC3k88Jv3DKxyj/NI7fSKLRE84rOVQTef62Grhl5mzlSz+5L7SVtGTD0AYcgUgIfLwAr/0TuGLA2cojgd2bLuy62V7GoRfZs5WiuSWbek1oicfgDDkCkBC5OEFfhndwhcHzlD+mRq3EI7cdlifptcokpuFX2YSqU222m+XtiXAyZErAAl5e9vfhC9BnKfe3vY30RMOa6FV6fn6JL7WNt+IXAE4OXIFICHkClsWucKBbYgr8U49J/waW0wFhZVmbIxt+pWs8S2Flb6FzXKF7/6veb0QcGbkCkBCeA/KZsV7UI5N4q1KQWGlOb5B7W/+duKV10wuLjMVveOQNb7XJ/G1NnsPirYlwMmRKwAJkfhiyJGKBZBjc9+VL7XDtqN3HCpZv6X33//z+SzxrHp++gsrfd/gsBLb3VYZ3euCieuA8yJXABLyfuIx3/0dwhdAzlDsM+vYpPBK4SZl67Ms8WKQmFUZG2OtNIzo7dm2/FvzeiHgzMgVgITQbGqz4lw8xyYqV2xStiZvST3x298P/PCnC2aJZzX0/R9Yb0jJW1Jt+QmQKwBnRq4AJOTzA3XkCtsUG9c4Nlu+B/XX+LqZxuslZQnbPKzYpGy15fMK3oMCnBy5ApCQuIIWRfJpmy0CnLk8U86EZp8SPeGwFlu2KjX9Sra8OGGbhxU2a9reQNsS4PTIFYCElJzu8YivsdkiwJlLkXjyqxMdoicc1mLjfWav//CNZecK6z2s2JDVq/ILtuVtxT6zgJMjVwAS0to76BlTbst1gNOWT8Lxuo5+0RMOa7Fxq9ImZevE916V2sOKDVm9RR4f2fK24vVCwMmRKwAJGRwa8wgvtOU6wGlLEVncOzAkesJhLX/9slqR3GLLKyoorHQZuaLY3Yrr/k3KVnIFAFsiVwASojcYfvuZTTeFdNpaE5jzcGJS9ITDWnZl18uTmmx8UWVsjF1SqJj43qtWbX5I3pJq401mFckt29JrRE8+AGHIFYC0eO0u5AgLa5d/ZrdrYI7oqYYVHai8sD7W1q1KjW/JpfOwYkNWb5HHR7Zs2t6Q1SuLP6ksaRU9+QCEIVcA0rLjQA1bQlm7PFPObt1XKXqqYUV1Hf0eUbZrVdqkbO396S8k9bBiQ1Zv41sKG99ZstiqYy29oicfgDDkCkBaSk73yGOrbLwacLbyTKxR1XwteqphRb0DQx7hR2xzOQWFlWp/9DNJdVbM1Pmfr7L1nRVdev7STdGTD0AYcgUgLYNDY26heTZeDThbyXcXabT3RE81rOixbmrV5yobXEvROw5NvPLaMjq2rf2wInp7to2btjdk9boG5d4afiR68gEIQ64AJMctRG2zI72csPwzNat3qvQGg+h5hnWtC1b7ZXRb9VpaaqP2s7LBG0pFHh/ZuGk74IDmt59li552ACKRKwDJicxplO1psOWCwKlKkXx6ewZb1ji+jXuOWfVovOOr3lteqDC5uHwSX2vt6/ziG7+0cdO2T1q7b1SR6GkHIBK5ApCc6vYrCk7Hs1p5xR8vOd0jepJhdYmFzbLEU9a4hDYpW9vf/O2yQ4Vt2qmtfeLeiyVPatqVfUr0tAMQiVwBSM7IuG71TlXAwYsW/8Fv4/ciJFk964LVvALuDOo7r3nGlln8EvprfN3iu7QzNsY2/Upm+4cV0duzBTRtx1ZWnL0ketoBiESuAKRoW3qNxU/1IlRsyOr1TDnzwRfloqcXtjAyrlsdmGPZ6ycorHSRXdr3v//fgsJKZ/7U9R++YeOHFUUeH9m+adstNH9waEz0tAMQiVwBSFFTt1YWWWrBH/mEipnyjCmvausTPb2wEZ/IIp+0dktdPIvv0u799/98vrdhk7J14nuvzvyn4LASG1znF9/4pY1veb/0zvUheaInHIBg5ApAiqae6tcGq/3SuyzyI59QMVMzx2zrnkyLnl7YSMJhi7VYLL5L+8Q77734x4PCSk0uLj0//YVtLvWJV16zcdM2zRUATOQKQLISDjfLEurM/3lPqHhWij314YfqRU8sbKe+85oixtwWi8V3aU9879WMjbEv+zoZG2OjdxyywXUeHFZi+6ZtmisAmMgVgGT1DgytDcnbkNVjznponlWOE5ZHxBEOA3YqDycm1wTmmrMFwuK7tK//8I1nDRViS+UXbPOm7R630Dy2QwBArgCk64OUCkXy6eX9pN+kbFX5BQtf4kinPFPO/D6+VPSUwta27KtSJDcv75pZfJf2hZW/sfF7R/PU+Z+vsnHTtpey9U97y0RPNQDxyBWAdLVoBtzDjyzjx/wmZatttp2xo1JEldZ19IueUthaXUe/LPrYMi6YjI2xiwwVJeu3CL+8n6+JV16z8duPnrGVnAkDwESuACTu9/GliuSWJf2MnwkV0vnXUymUl7LNJ6pQbzCInk/Ymu7J9Ls7Vf6Z3Uu6YIrdty6yoSJpa5rwy/v5Cg4rMbm42PL2Dzh4cU1gzsOJSdFTDUA8cgUgaU3dWveI4sX/jCdUzFmK6DK2l3Va4YcaZIn1S7mD5ItsqPhrvAV2VrBsqfyCbdy0LU9q2rb/hOhJBiAJ5ApA0vQGg3dkoZeybTE/4IPCSgkVL5Z3art7qHrqqV70ZEKM1t5B2eLC+SZl6yK7tJt+JZPmjXb+56ts3LTtGX2MNwwBzCBXAFLX1K1dv+vwghtDBYWV9vz0F9Jc6witHvnuYh5WODO9wbA+JG/BA/IW36Wd6xso+qp+aU288potm7Z993+9LjiX0A5gBrkCsAPbM2oU855lQah4WSn2NnyYUiF6AiFYcVOPLKp8nutkkV3aE997VSKbyc5Zn8TXmlxcbNm07Rl3PLu6Q/T0ApAKcgVgB+6OPF4blOuX3jnnj3ZCxcvKL6PbNTB3cGhM9ARCsKmnerdgte/+r+e8ThbZpX39h29I/C7L2Bhry6Ztv4xu18Ccx7op0dMLQCrIFYB9OFyvkUUeffFHe1BY6dD3fyDx5Y6oUsSUH6i8IHrqIAlfneiQxx1/8SJZZJd2069kwq/nBavxLYUtm7Y9E2v2lbaKnlgAEkKuAOyD3mD4fXypPKnp+Z/rSVvThr7/Aym/mCGwPFPOeEcW8uY3ZjzWTa0NVvtlfLfh7CK7tCe+96q9nFs/9K//ZrOmbf9MjVuIemRcJ3piAUgIuQKwG/23HrgG5T57lyNjY6zE3/YWWH7pXWuD1RrtPdGTBglRlrTK46tnrpCZB30Lhor73/9v9nKLzTRX2Kxp2zOxLjavSfSUApAWcgVgT8rPXFofdiTg4EVCxbzV4x5RnHeyW/R0QVoeTkzOdFkkbU1bTJd277//px29YTjTXGGbpm2/9K61Qbl3Rx6LnlIA0kKuAOzMruxTSs9thIp5Sp5Qy0FdmFP5mUtZrn9cTEPFiXfeE34lL6ka31LYrGnbK7Yit7ZL9GQCkBxyBWBnnmR9NfE/v7Lts78JX8dIszxTzsrC8h9OTIqeKEiR4f33F9NQkbQ1TfiVvNQa+td/s03Ttpeyjc4lAHMiVwD2xKhUGlesGKhtXBOY4516TvhSRmrlu7/DNTCXtgq8yDg6anzzzcVsJmuPTwJnmits0rTd4xFR2No7KHo+AUgRuQKwG8aNG00uLsauLpPJ1NStXReS57u/Q/iCRjrll97lGpRb3X5F9ERBcoxdXcbXX18wVFxY+Rs7aqh4vpK3pNqmaVuxp37b/mrR8wlAosgVgH34NlSoVM9+pfzMpbUhec/vm+nM5ZfR7RZ6uLipR+AcQZqMZWXGf/mXBUNFrm+g8Mt42VW16g82aNr2SbvgFqymXRvAy5ArADvwYqiYkVvXtS70sH+mRviyRmwFHNC4RxRzRBdeZFSpFtNQEb3jkPDL2JzS/ug/rN20HXDwokd4Ic8DAcyDXAFI3ctCxYzgvA5FQm3AAeeNFgEHNOvDi6LVbKWP2WbunQUbKv4aXyf8MjanNilbTS4u1m7aVsRVhR+qFz2lACSNXAFI2jyhQm8wZp+583nx1ZjDbetCDzvnC1F+Gd3uEcW7VQ16g8H2swPJMo6OGv/H/1gwVDT9/O3fRZYLv4zNrJnmCqs2bXultHjtLtA9mRY9sQAkjVwBSNSz7WvmDBXjk/qYqoH4EwPfTOlNJtOhmk7XYLWztXH77v96/a7DX5adt/nkQNKMXV2L2frJqFJp74yuDcr1Sbsg/GI2p2aaK6zXtO2X3rk2KLfvxrDoiQUgdeQKQIrmDxW3x558dqRf3XZXbzA++8XK1j7XILXzbD7rk9buGqSmURuzGBsbF+zSNq5YMbOvmslkqmztcwvNt+vHfTPNFVZq2vbP1LjvOny0uVfstAKwC+QKQHLmDxWdg+Obc/oa+8Ze/E8tmoF1wWpF8mnhCx1rlyK5ZU1gTlO31vqzAXuymC5t48qVxtHR5//UVyc63MOP2GmT0kxzhdWatntku9kRAcBikSsAafkuVLz//ov/taJ7+OOCK313v3nZH++/9cAnslAWWxVw8KLwFY91qkcRf0IeXsDhd5hlMV3axk8/nfPPJhxulkeVbcjqEX15L7lmmius1LTtFVsR+tUpG88jAPtFrgAkZJ5QMa03pjfeCiy5en98gdZJ3ZPpXdmn1ocd8d3/tfBFj2XLL73LI6L4s/QTDycmrTYJsD+L6dI2rljxsk3VTCaT3mAIyqqVxx0XfpEvtYo8PrJS07ZXYu1fUirYEQHA4pErAKl4diTwi6Hioe5pRLn2i7obk9OL/RlffuaSa2CuIrlZ+LrHUuWZcmZdsDr/ZLelP3jYt8V0aRt//ONnDRUvo3sy/WFKhWdijfBLfUl18Y1fWqNp2zupwT+6iA2gACwJuQKQBGNX10yz6YuhQjus25J3ubhjaKlfs//WA//oIkVMmV96p/DVjznll97lFVvhE1XIu0+Y5dmNM1+o8PCY1VDxMt9Gi/hq4df84mvm72jZpm3PxJrfx5eMjOusPX0AHAy5AhBvnlDRevXRlrzLrVcfLe8r6w2G/JPda4PVXokn7bPjosczsW5tsDq3tmvqqd7sTxoOZVFd2hERS/qauifT2/ZXK2LK7aLXInp7tqWbtnu8E6o/TKngSQWAZSBXAILNhMRLTQAAIABJREFUEyqKO4a25F3WDpv7r4b3xybCD9Wv31XgmXJG+Epo8eWlbHUPK/ws/cTdkcdmfgJwPMZt2xZuqCgrW8ZX1hsMoV+d8owpk/4OUTPNFdof/cxSXzDggOajA2cJFQCWh1wBiPSyUDE5bfii7kZEufah7qmlvlfH5du/iy+WRRxRJLdI/N9iFckt8t3FPlGFLZoBS/314TCMo6NGmWzhzWQXaqiYh95g2HukRba7WOLnWsw0VzS+pTD/S/lnarxijgVmN0VWaCPKtQMP2BoBwJKRKwBhjGVl34aKlSuf//X749OBJVfTG29N640v+7PL1qIZ2LS3zC20QJHUJL03o3rkSU0e4YV/SDja1K1lIxq8yHj9+sJd2u+/v8iGivnl1na5heZJ+azJmb+vyi/YzK/jndruvis/6/iFmZvu9OWxLXmX1W13v5ni5UMAS0CuAMR49mr4rFO6/nFn4uOCKxXdw1b97l39d7btP+EapJbF10hhO1q/9E55Qp1baP7WfZXnL9206t8d9mtRXdopKRb8jh2Xb3uE5XvtrRd+j7xYz5orzGza9kluXB+innXffTOlzz5z5+OCK8tu7gLghMgVgAAvCxWNfWObc/o6B8dtM4z+Ww/2lbauC1Z7RBTLEk/5Z9r6lQ//zG75ngbZ7uJ1werEwubegSXveQXnsWCXtnHFCmNjo8W/7/2xiQ9TKjxjyvwzpdVuMdNcYXJxWfZXCDig8Yyt/OPeYy9rYeof0u06po0/MXDv0ZTFP1gAjodcAdjanKFCbzCq2+5+dqT/5ugTG49HbzC0aAaCs06+u1MlizwqSzzlk9Zu1fWQ7/4OWeIpeVTZuztVOw/WNnVr2esJ81u4S3vlSuP161b67nqDYV9p6/pd+ZLa+WCmuWLZTdsz+yLsPdIy/92nNxirL47MbHVtjTczATgScgVgU3OGim+m9PEnBmKqBsYnRS6vH+umqtuvRKubFBEFa4PVXrEV8j0Nvvs7LNLk7bu/Q57U5BVbsTZY7R6aF36ovqqtj2OzsSDj6Khx48YFGypsMJKu/jv+McWeMWV+6V3CQ8WGrN6JV15bXtO2X0a3Z2ylZ0TB4t85fKh7+mXDzc+O9P/9JpuzAXgpcgVgO0al8sVQcXvsyefFV7PP3NEbJPRvgYNDYxVnL4UfqvfeXfjbz7I9wgp94soVCdWyPQ1eyjbv1HN+6Z0z9d1i5Z+/4p16zkvZJk9q8kyo8Ykrl+8+8tvPsr13F4Yfqq84e2lwaEz0Xw52wzg6unCXtkpls/HoDYbc2q61wWqvvfViN1ULDitZVtN2j1dS49qg3INVF5bxkPDirYnPi6/uO3VzZIKNaAHMgVwB2Mizf3N9PlT8/ebjzTl9p/5hgb1rrEdvMAwOjbX2Dpac7kkuOvtx2vEPUio27jkmDy+Qhxe8sz377W1/e2d79sz/3Ljn2AcpFR+nHU8uOltyuqe1d3BwaOxk74ikUhPswoJd2sYf/9iczWSX7dbwo237qz3CCxXJLaJyhcoveKlN24rkFlnEkb+kVJiT7af1xmOdwx+q+6o0D7ipAcxCrgBs4btQsWLFs1BRpXmwJe/yxVsTYsdmAyFHr9m+bwR2zahSLRAqfv1ri2wmu2wtmoE/JBz954Ewts4V53++avFN2zOJ4g8JRy11IMz98enE6sHAkqt9d7+xyBcE4BjIFYDV/ZdQ0dVlMpn0BuOB07c/L77qJLusfNlws2PARptcwQEYd+9e4N2nTz8VPcZviUoXM80VCzZtWzxRPK9jYPzjgitZzbfFNoYBkA5yBWBdL4aKh7qnUZXXk2pvTE47y7lvxR1DVZoHokcBO7Bgl7ZxxQpbNlQs0ky6WBeaL0+otcGBMM+aK17WtO2X3umZWOcedthKieKZyWlDwbl7H6r7GvvomwJArgCs6cVQMfBg8uOCK4XtQ071anLr1UdZzbdFjwJSt2CXtnHlSiENFYvUd2P4i+Kz64Jz5btL5HsarHfexbPmillN2wEHNLI9DYqoUtegnL1HWmx2IMzN0SdRldcjyrUDD9jhDXBq5ArAKp5fIT0LFee1jz5U952+7HT/sKcd1kVVXhc9Ckjawl3aHh5iGyoWaeqpvqlbuz2j5t2dKkX0MVn8SZ+0C5bNFc+aK2aatmcOhFFEH3t3p+rT/SfqO68JORCmsW9sS95lddtd53kSC2AWcgVgeXOGitKv72/Ju9w/pBM9OgG+mdJ/qO4TPQpI18Jd2hERose4ZA8nJus7ryUWNnvtLlwbrPaKrZQnNfmkXTB/g9qZ5gqTi4t3XNW6kDxFREGMurG6/cr9McGbQHwzpc9qvv1xwZXWq4/EjgSAEOQKwMJeDBWT04Z9p27uOqZ15k3ft+Rd/maK5k7M4dm5Li9tqCgrEz1Gc90deVzdfiUqp/F38aWrd+a4hx32iimTxZ2Q72nwUrZ6Kdu8U9tnjn8JOHhxQ1ZvwMGL/zwNpt1L2ealbJXvaZDHV3vFlG3+OHXmk7nz4/+juv3K3RHJHVTXP6QLOXotsXrQSfalAPAMuQKwpFkviBu7ukYmpkOOXvuy4aaTvxsQVXldO+yMz2owvwW6tFeuNF6/LnqMlnd35PH5SzdLTvckHG7+IKXig5SKPyQcnTkB5t2dOeuiKp8dCPOHhKMfpFR8kFKZcLj5SIOmtXdwJC3j2w/nj38U/fd4Kb3BWH1xZEve5dKv70/rnaiXDHBy5ArAYmaHCpWqf0g385NV9NDEy2q+fab/oehRQEIW7tJ+/327aKiwrM7B8Ziq+XZwMv7xj99+Pvv22WxUyzMyMf1lw83PjvT//abkHqoAsAZyBWAZxq4u4+uvPx8qTl8e25zTx7kNM6o0D4o7bLQ7DaRv1v0yR6hISRE9RjFKv75fcO7ePL/B+JOffPsRNTTYbFTmuHhr4rMj/V823HTmF0EBJ0GuACxg1lY2+kOHCs7d+7TwCrsuPtMxML7v1E3Ro4AkGMvK5unSfrbVgXNKqr0xzz9GGLXa7z4r+zGtNx7rHP5Q3Vd9ccSpttgGnI09/R8TIE2zQsXUV4cSqwejKq8/1D0VPTQJuTn6JOToNdGjgHgLdGmvXOmE7z49b3NO3zz/rm9Uqb79oN5805ajsoh7j6YSqwcDS64657Z4gDMgVwBmmRUqRtOzPi++euD0bf5Nbha9wfgn1SXRo4BgC3Rpv/++6AEKdu/R1McFV+b5Dd81V0i4aXt+57WPPi64ktV8e3ySDeIAR0OuAJZvVqi4kXJg5kG/6HFJ1GdH+nnB2mnN36VtXLHCqFKJHqN4Z/offlF3Y57f8F1zheSbtucxOW0oOHdvS97lxj6nOyQUcGzkCmCZZr0jrond/6G6j21P5pFUe+PiLcHndkEIY1fXfKHixz925oaK56nb7lZpHrzsvz7fXGEvTdvzuDn6JKryekS59uboE9FjAWAZ5ApgOZ695TxTfa4+nxdfvT3GT8f5qNvu1vXyMMfpGBsb5+vS/vWvnbyh4nm7jmnnyd7GY8fssWl7fo19Y1vyLqvb7jr5CT+AY3Cc/28CbGZWqOh+xyv+xACHSS+orndE3XZX9ChgU7Nultmh4tNPRQ9QQvQG4/vZ/5hneW387DP7bdqexzdT+qzm2x8XXGm9+kj0WACYhVwBLM2sddK5XyvUbXfp0l6Mi7cmkmrne3ccDmaeLm3jihXGsjLRA5QW7bAusOTqPL/B+POf23vT9jz6h3QhR68lVg/eezQleiwA/v/27jUqqjPP93je9pzTzayTeXHWdKfTvWadJN1zzrQzZ3r6rPQ5Y3cymURN5OKNaLJCuuPENm1HzQXvGI0hpFXQRIzSjWDRiAIiakSJAVTESwgQES0BCxAVEQFFBCFVu84LMghVu4rLrqrnefb+ftb/TaysrCe1f3tb/6r9f/Y40VcAY+DRVJT+v0jmDkevvbt/8e460atAKGgdHdqvfuVvM1kGKrwU1rSnHL/m61Wto+PBG6jy0LYfTpdWUN0+z2bP/epmv5MvawD10FcAo6WtXj30s1HZv0bZW+6JXpRifpt2kd92TG+EKe3wcAYqdCUXXz16wec7M3S4wgRD2360d/d/UtS8eHcd22AAyqGvAEbF446OL3897WYXW6aO2bK9l9n7xdxGmNJOTBS9QHm9k13feKvX16uDwxVmGtr24+vmu4t3131S1Mzm1IBCLHF5AgzyaCqq/30GW5eMz6ajzeWNXaJXgWDxM6WthYVpxcWiFyive31O/7/mPRiuMNfQth/9Ti33q5sDDwXid05ACfQVwAg8moqOx/+n6BUpLLu81c/2/FCavyntCRO0hgbRC5Ta18131xxo8PXqsOEKMw5t+3HjTl9CQVNsTn1da4/otQAYAX0F4I/HR6W7P/0Hbg03orTutp/JVChK6+jQIiJ8NhUxMZw1I8qraMs8fcPXq8OGK0w6tO1fWf2dBZm1KcevdfWyozcgL/oKQJ/W0eHRVNz/nz/j45FBjrYeP1/KQkVaQ4O/Ke20NNELVMPGwitnHD6f3qCtWWORoW0/evtdtlMt8zMusQsfIC36CkCH1tHh8VHpm59NoKkw7l6fc57NLnoVCBitstLXlLYWFsZmsqM3z2b3M6CsPfWUpYa2/WjuuB+X74jLd7ADBCAhq1+hAG/eTYVrAk1FwMyz2Xk2uTn4m9LmlBmLm1398zMu+fs3Bt9Yywxt+1ds75yfccl2qoUtNACp0FcAw3g3FXxCCqy4fAfzlyagLVrks6lYuFD06hRzxnFnY6HPR9FrRUWWHdr2o6vXmXL82oLM2rJ6n/ePAQgx+grgAZqKEEg5fq207rboVWD8/Expa2FhDFSMg+1Uy/6qNl+vDhuusOTQth91rT2xOfUJBU037vSJXgsA+grgP+k0FWFhNBUBt7+qLetsq+hVYJz8TGlrjz7KQMX4rDnQUH2129erQ4crLDu07YfTpRVUt8+z2XO/utnv5DEXgEj0FYDbrTd+ytRpkJQ3dm062ix6FRgPf1Pa4eE04ePjdGkxqRf8zQkMfavhQ3t3/ydFzYt3133dfFf0WgDr4iIF0FSEVHPH/WV7L4teBcbM35R2XJzo1Sms8VZvbE69r1eHDVcwtD2Sr5vvLt5d90lRs5/NtQAED30FrI6mIsT6nVpM6gXRq8DYaKtX+xyo2LdP9OrUdvRCx7ZjPh8WOWy4gqHtUeh3arlf3Zyfcamgut3p4rYoIKToK2BpNBVCLN5dx7eJqvB+QOSwXQ04WQxLOX6tsKbd16vDhisY2h61G3f64g81Ltt7md3ngFCir4B10VSIklDQxD3QSvDezODByRITw0BFQMTm1Dfe6vX16tBrFEPbY1VWf2dBZm3K8Ws8MwcIDfoKWJSWluaiqRDEdqrFzxe0kIS/Ke3ERNGrM4nefldM6gVft+toFRUMbRt0r89pO9UyP+NSsb1T9FoA8+M6BSvSnUClqQiZwpp226kW0auAP1pamm5ToYWFacXFoldnHtVXu9ccaPD1qrZpE0PbAdF4qzcu37HmQENzx33RawHMjL4ClqPfVPAwrxD6uvluQkGT6FXAJ59T2hMmaA0NoldnKvur2vz02FpUFEPbAVRs75xns2eevuFvV18ABtBXwFpoKmTQ3t2/eHed6FVAh78p7ZgY0aszoY2FV8447vh6ddhwBUPbgdDV60w5fm1BZq2ftx3AuNFXwEL6/ryDpkISMakXeDKubPxNaXOaBMeCzNqbXfp7o3kMVzC0HUD2lnuxOfUJBU037vSJXgtgKvQVsIq7S1fyaUkey/Ze5kZnqWiVldqPfqRzjjz6KKNHQdLe3T/PZvf16tDhCoa2A87p0g6euzXPZs+raOM7DiBQuFTBEjqjX6apkMqmo83ljV2iV4Fvafv26U9pT5zIZrLBU97YtbHwiq9Xhw1XMLQdHO3d/ZuONi/eXVd9tVv0WgAzoK+A+V2PmkNTIZuss637q9pErwJut9utJSXp3/u0cKHopZlc5ukbeRU+z4JhwxUMbQfT1813F++u+6Somed1AgbRV8DMnC6t7vlomgoJldbdTjl+TfQq4Nad0tbCwjhHQuD9g42+vibXHI5hR4Sh7SDrd2rZ5a3zMy4VVLf7epwIgBHRV8C07vU5q56ZwbY2cqpr7YnLd4hehaX5mtLWJkxgoCI0fpt20ddzoD12rmNoOzRu3OmLP9S4bO/lutYe0WsBlERfAXO61tBy5tfTaSqk1dXr9DOximDzOaUdHs5ARWg03uqNzan39ar2m98wtC1KWf2dBZm1Kcev+er6APjC1QomVF19pfHRn9JUSG6ezc5f20L4nNKOixO9NAsptncmF1/19ar24x8ztC3QvT6n7VTL/IxLxfZO0WsBVEJfAbMpLL3cRFOhgrh8BzcbhJ7ulLYWFqbt2yd6adaSWnq9sKZd9yXP4YrFi0O8NgxovNUbl+9Yc6CBTbGBUaKvgHk4XVrqwZrmH9NUqGHbsWuldbdFr8Ja9Ke0J0zQGhpEL81ylu297GjT76s9hyuYoReq2N45z2bPPH2jt98lei2A7OgrYBK3e75J2FXV8nd/T1Ohiv1VbVlnW0Wvwiq0jg7tV7/SPTsYqAi93n7Xb9Mu+tp3yGO4QquoCPHy4KGr17nt2LUFmbVnHHdErwWQGn0FzKDxVu8727+89dj/oqlQyBnHnU1Hm0WvwhK0ykr9rZ8SE0UvzaLsLff87Ic2dLiCoW152FvuxebUJxQ03bjTJ3otgKS4YEF5Zxx33luT1/+9MN0bPESvDj41d9xftvey6FWYn1Zc7D2lrYWFsZmsQAfP3bKdatF9yXO44qmnQrw2+OF0afur2ubZ7HkVbf1OHnMBeKKvgNpyv7q5bt0+Z5je5jYTJnCDh8z6nVpM6gXRqzA5jzv1OTUkseloc1m9/h01Wl4eQ9uSa+/u31h4ZfHuOl+PNQQsi74Cqurtd31S1Lx5wwGX7o6ZfHJSwcKs2ptd/aJXYVr6U9rcGSiBBZm1vu6l0RYvZmhbCV83312YVftJUXN7Nxcx4Fv0FVBSe3f/sr2Xd24t0N+Gn6ZCEQkFTV833xW9ChPSndLWwsL4kCoD/w+F1P7pnxjaVkW/U8sub52fcamgut3XFD5gKfQVUE9da8/8jEtH/vIFTYXq0k62+NrCH+OmO6WtPfooAxWSKG/sWn/kiu5LWkeH5zUN0rvWeT/+UOOyvZd5IA/ANQuKOXapc266vfajrTQVJlBY0552Un96FeOjVVbqTGlPnMh5IY/s8ta8ijbdlzyHKxjaVkdZ/Z35GZdSjl+71+cUvRZAGPoKKMPp0jJP31iQWdv68XbvjoKmQkVfN99NKGgSvQrz0J/SXrhQ9LowTPyhRl+3/3kOVzC0rZR7fU7bqZb5GZeK7Z2i1wKIQV8BNfT2uxIKmuLyHd3b/6zfVISF0VQo52ZX/8KsWtGrMAlt0SKdk2LfPtHrgqe56XZfX2l7DlcwD6MgR1tPXL5jzYGG5o77otcChBp9BRRw407fO9n1ycVXv0nd4bOp4N5xNcWkXmAbeIO0jg4tIkLn5ztOCvk0d9x/J7te9yXv4QqGttV19ELHPJs962xrb79L9FqA0KGvgOyqr3bPs9n3V7Xp3uNBU6G62Jx6vtUzQmto0JnSDg/n5zs5HbvUmVx8Vfclj+EKhrZV19Xr3Hbs2oLM2vLGLtFrAUKEyxakVljTPjfdXtHU5X2PB02FOWw62nzGof+AMIxIf0o7MVH0uuBT2smWgmr9PdC0NWsY2jYfe8u92Jz6hIImntUDK6CvgKScLi3l+LXFu+uudd7XfbwXTYU5ZJ1t3V+lvzcO/PP+BU8LC9OKi0WvC/6syHM42vR3I9WeeoqhbVNyurT9VW3zbPa8ijZu+4S50VdARrd7vnn/YOP7Bxu7ep00FeZWbO/cduya6FWoR2dKe8IEraFB9LrgT79T+23aRZ+fLD0OKEPb5tLe3b+x8Mo72fXVV7tFrwUIFvoKSKe54/7CrNrU0utOl0ZTYXp1rT1x+Q7Rq1CJ/pR2TAwDFfKra+1Zkaefdq2oiKFtK/i6+e7CrNpPippv93wjei1A4NFXQC4VTV1z0+1HL3S43W5fTYX7oYdoKkyjq9c5z2YXvQplaB0dOlPafLGtiILqdtsp/QdBegxXMLRtYv1OLbu8dZ7NXlDd7nRxWxRMhSsXJJJX0TbPZr9wvVv3G1k+RZnV3HR7Vy9PqB2Z95Q2P9yp5ZOi5tK627oveQ5XMLRtdtc678cfalyR56hr1Z+3AVREXwEp9Pa7kouvvpNdf+NOn+43sjQVJhaXz9+sI9PS0jybCh4wr5rFu+tu3OnTf83jQsfQtjWU1t2en3EptfS6r0clAmqhr4B4t3u+WZHnWH/kSm+/i6bCgpKLrx671Cl6FVLTVq/2PBcWLhS9KIxNV69zbrr+LX86wxVc6yzjXp8z7WTL/IxLXAZhAvQVEKyutWd+xqWss61Ol0ZTYU37q9qyzraKXoWktI4Oj0EjLSyMc0FFFU1d649c0X3Je7iCoW2rcbT1xOU71hxo4DmhUBp9BUQqrbs9N90+cMMxTYVlnXHc2XS0WfQqZOR9UmiPPspAhaJyv7qZ+9VN3Zc8hisY2rYmp0s7eqFjns2edba1t98lejnAeHDxghhOl5Zd3jo/49LAjfVaQwNNhWU13uqNzakXvQrp6Exph4czUKGu9UeuVDR16b7keaAZ2rawrl5ncvHVBZm15Y36aQFkRl8BAXr7XeuPXFmR52jv7nfrfX6iqbCUfqcWk3pB9CrkojOlHRcnelEwZG66XXc2V6uoYGgbHuwt997Jrk8oaLrZ1S96LcAY0Fcg1G7c6YvNqf+kqHngd94RmoqYGNHrRSgsyKzlr89BWlKS50DFvn2iFwVDbtzpW7y7TvclbdMmvkyBN6dL21/VNs9mz6to8/mMdkAy9BUIqQvXuweukgP/SFOBAQkFTV833xW9Cil4TmlPmMBAhQmU1t1OLr6q+5IWFcXQNny52dW/sfDKO9n11Ve7Ra8FGBl9BULn6IWOuen2wXtGaSowKO1kS2FNu+hVCKYzpR0Tw0CFOdhOtRRU6ydc5zIIDFfR1LUwq/aToubbPd+IXgvgD9cvhILTpaWWXl+YVTu4gx5NBYYqqG5PO9kiehUiaZWV2o9+NOwsSEwUvSgEzIo8h6NN5+GPOsMVDG1DT79Tyy5vnWezF1S3O13cFgVJ0Vcg6Lp6nfGHGtccaBj8okVLS/PVUdBUWNPXzXcTCppEr0IYbd++oW22FhamFReLXhQCxunSfpt2UfcWeZ3hCoa24du1zvvxhxpX5DkGtlIEZENfgeC61nl/8e66lOPXBr9foamAtxt3+hZm1YpehRieU9oTJmgNDaIXhUBytPWsyHPovqQzXMHQNkZSWnd7fsal1NLrujuMAQLRVyCIKpq65qbbh95VTFMBX2JSL1hwzxPPKW1OATMqrPF5m5/37aAMbWM07vU50062zM+4dOxSp+i1AA/QVyBYBjbIG7qFxQhNxYQJAlcL4WJz6htv9YpeRejoTGnzRbVJJRdfLa277f3nmsOhczEERs3R1hOX71hzoGFwdhEQi0sYAq/fqSUXX30nu/5a54Mr3YhNBfveWNzGwitnHHdEryJEPKa0tUcfZTNZE/O4GA7yvioytI2xcrq0oxc65tnsWWdbB54KBQhEX4EAu93zTVy+I6Ggaeh9n9qiRTQV8C/z9I39VW2iVxEKWnHxsCntiRPJv4nd63POTbfrvqT95jcMbSMgbvd8k1x8dUFm7eBO7oAQ9BUIJEdbz4LMWtuplqG74HncQU5TAV3F9k5fDw4zE4+vqLWFC0WvCMHlZ68z7cc/ZmgbAXThevc72fUJBU03u/pFrwUWRV+BgCmrvzM33e4xQ0ZTgVGyt9yLy9ffM8c0hp4OWlgYHyKtIK+iLbu81fvPdYcrGNqGQU6Xtr+qbW66Pa+izYI7YUA4+goERnZ56/yMS/aWe0P/kKYCo9fV6/N2ERPQOjq0X/1qWPgZqLCGjYVXKpp0bk3RHzkDAuFmV//GwivvZNcP3ToFCAGuYjCqt9+1sfDKsr2XPX54panAWM1Nt3f1mnA7dq2ycujWT1p4OOG3jnk2/VTrDFcwtI2AKm/sWphVm1x8dfChtECw0VfAkJtd/bE59RsLrwzdhkLr6NAiIvw1FWFhfK6CN1M+RNZzSjsuTvSKEDo3u/oX767TfUlnuIKhbQRav1PLOts6z2YvrGkfOvcIBAl9BcbP3nJvfsal3K9uDv1D7135dZoK7gCBnuTiq8V2Uz3jaei9LlpYmLZvn+gVIaTOOO58UtTs/ef6wxXM2yA4rnXef/9goym/uIFs6CswTsX2zrnp9rL6YQ8coKmAEXkVbVlndSZcFTVsSnvCBK2hQfSKEGq2Uy0F1e3ef67l5TG0jRArrbu9ILM2tfT60F3ggcCir8CYOV2a7VTLgsxaR9uwbz5oKmDQGcedjYVXRK8iADyntGNiuPHPmtYcaND9hlhbvJihbYTevT5naun1+RmXdB8ADxjHhUxS7V095xw3Dp6yb8k/syK16I3Nn/3Hxv2z1u6JXJX5XGzarxf96bnYtMhVmbPW7vmPjfvf2PzZitSiLflnDp6yn3PcaO8K4g+d9/qc8Yca4/IdHnNgNBUYJT/Znrx81+S4vaKyHShaQ8OwKe3ERNErQhD5v1ZPWXNg0tKd3nnufPzvGdpG6A3EdWfRxdd3VL/256rffVIoyUcLmAZ9hSzau3q+qLickHX8pfjcZ99Nfy52Z8Tq7Ih1ByPiP5+WWDo96dSMzaejkyuikytmb6+ek1Ize3v1wD/O2Hx6etKpaYmlEQlHI9YdjFqTO3mp7dl301+Kz03IOv5FxeUAXguudd5/J7t+27FrHrtie3yQoqnAUEpxOtptAAAgAElEQVRkO1C0ysrBKW1ib0rG8zw7TucmqMaXfithnqE6P3Gd+cmXc7afj95aaZrLL2RAXyFS3zfOspqmTbllL8XnPvNOWtTavPD4whmbT7/46bk5KTVG6sVPz83YfDYi4WjU2rxn3kmbtWbPwIWg5/74n8H5dfPduen2/VVtHn8+9IMUTQUGqJXtQBk2pc1OyiYS2DxvmL/Z+zq5KeoPsuUZirLm5ReSoK8Q45zjRnzm8WffTYtYnR0Rf2R60qmBrwqCU+dnbD499YPD4XHZz76bvia9uPzStbEuuKC6fW663fvpTiM2Fe6HHqKpsBTlsh0o2qJFQwcqRC0DgRWMPB985hXv6+TSlTlS5RkqsuzlF/Kgrwiplva72w58Gbkqc8ryzIgPC2dt+SpoJ7x+RSdXhscXTl2VFb7iL8n5Z5taR97T0+nSth27tnh33bXO+x4vjaqpYOdEa1Ax24Ey9IEtWlgYmTeBoObZ8cOfel8q5ckzlGPlyy9kQ18RInVXby1PPfrckp3h6z6bsfl0iM9575r58dnwDwomLbG9ve2w/YrnrU2Dbvd8s+ZAQ/yhRu/nxdJUYICi2Q6UocNF2qOP8uuc6oKd59eSyrwvldVP/EKSPEMtFr/8QkL0FUFXWXd9UfLhSUtskR99YfzuxsDW7O3VEQlHpyzL+F3SAe9fMBtv9Q7sde39kE6aCrhVznagDJvSnjiRgQqlhSbPusMVB595RYY8QyFcfiEn+oogqmls/V3SgeeXZ0Z8VBTMexyN1/nI9SVTV2W9HJ97znFjYPFnHHfmptuPXtD5nDR0OJWmwpqUznagDJvSXrgwsP9xhFIo87wn/PfeF8ytr64TnmeogssvZEZfERS3u3vjM49PWmKLXF8yJ+W86HN7tBW14diUZRmr04rau3rOOO5cuN7t/b9GU2FxJsh2QN4HbfXqBwMV+/YF5L+J0At9nquf+IWPoW2ReYYSuPxCfvQVgXegzP78MlvEB4dk+2lyNDV727nID49MXmrLLjnvdLk8/tdoKizOxNkePa2jQ3v1VffgZrIMVChLSJ51L5sC8wxVcPmFEugrAulq253f/HHfC6v2zPz4S+GnsZGataU84r3cl+Nz667eGvy/o6mwMnNne/SGPldeCw9noEJRovK89q3UMQ1tBzvPUAKXXyiEviJgPi+vnxS7M/KjIuGnbqAqcn3JpNid+aUX3aNsKtiz36TMne3RGzalnZgYpHcbwSYwz7rDFSMObQcpz1ACl1+ohb4iAPq+ccbvOj552V9mfnxW+Bkb2Jq15asXVu4u/7/P0lRYk+mzvSL16CifFKulpQ00FVpYmFZcHOQ3HkEhPM+6wxWjHtoOZJ4hP+FxDV4RVxOjrzCqqbXzpQ9ywtfkz96m3i2Po6niJyNoKqzJ9Nmeve1c5PsHZr6XNeKP8g+mtCdM0BoaQvL2I8BkyLPu9fPN+CMhzjPkJ0Ncg1rE1azoKww557jxXGy6mX6g9KjiX0bSVFiT6bM9WJHrS6Yss5XVNOm+D8OmtGNiGKhQlAx51h2u6P7Od0OZZyhBhriGpoir+dBXjF9RxeVnY9OnJ5UJPzODVDQVlmX6bHvUjM2nn4vdeehMrcf7MGxKmz0JlCVJnnWHK4wMbY81z1CCJHENWRFXk6GvGKc9JecnL82Ysdlsdz0OFk2FZZk+27o1a0v5pCW2nYUPNo0dnNLWwsLYTFZd8uRZd7hiT/jvQ5NnKEGeuIayiKuZ0FeMR3L+2SnLd83aUi78bAxGvZZUVvP4v9BUWJO5s+2/ordWTVm+a2P2Sbfbre3b921TMWEC9z6pS6o8d//V97wvpBvmbw5BnqEEqeIa4iKupkFfMWbbDnw5Zfmu6K1Vws/DYNRrSWWOH/5kxKai/r//iPPffMyd7dHUi5+ee2HVnqKYN79tnhcuFH1MMH5S5XnpypygDm37yTPXaiVIFVchRVzNgb5ibLJLzpv4zB9lU9HwyBOvbSydsnzXjsMVog8IAsbc2R59DWyAdv+//FcGKpQmW57TopeGYGjbu2ZvO8e1Wn6yxVVUEVcToK8Yg6KKy5OW7DTrb5RjaCqSyuYM/Gq5LINH25iDubM91lPg5n/72zd+u45sq0vCPJ/5p2dCM7TtXVyrJSdhXAUWcVUdfcVolV+69mxs+syPvxR+1gWjxtpUDNSsLeVTlmWUVDlEHxwYYu5sj7KWrMxtffj77oce+nLCU68llZFtdcmZZ93hiiANbXsXeZaWnHEVW8RVafQVo+K43jF5iW3G5tPCz7dg1JKVueNoKgZqxubTz8Wm26+0iT5EGCdzZ3uUtf6Njwc+9uW8MJ9sK03OPPsargje0LZ3kWcJyRlXGYq4qou+YmQ99/tnf5Bt1ifULFmZq/tF2miaioGK2nBs2updd3v6RB8ojJm5sz3KSp+1ZOBO9/VvfEy2lSZtnnWHK4I9tO1d5Fkq0sZVkiKuiqKvGNma9OLwNfnCz7FglPGmYqAi1n327vYjog8UxszE2R5lDTynpeGRJ5aszCXbqpM2z7rDFSEY2ibPMpM2rvIUcVURfcUIDp2pfX7lrtnbzgk/wQJeo2wqur/zXf9NxZyUmtnbq6eu2rOn5Lzow4UxMHG2R1ODz2kpeTLCT8LJtipkzrPulTY0Q9vkWU4yx1WeIq4qoq/wx3G9Y8pSmykHqkbfVPj6HtejopMrnovdyd2QqjBxtkeZ/4GZop2zYsm2Ccic5zfjj+heXUM2tE2eZSNzXGUr4qoc+gqfnC7Xqx/tizDjvY9r394R2KZioKI2HH/x/WynyyX60GEEJs726PPf/Z3vrn17B9k2AcnzvPXVdcKHtsmzPCSPq4RFXNVCX+HT3uM1U1fnCD+jAl6+/pIz2FQMVMTavIzPq0QfOozArNkeff4bHnniD/GFZNscJM9z8S+jZBjaJs+SkDyuchZxVQh9hb6bnd1KP6dm6cqc4l9Gev95UJuKOSk10ckVk5fYWtrvij6A8En1bBusra+uK3kygmybhvx5bv2bH0gytE2ehZM/rnIWcVUIfYW+pSmfR8QfFn4ujbsOPvOK+6GHPFqLYDcVAxWV8PmiLYdEH0D4pHq2BRbZlpDkefY1XCFkaJs8Cyd5XGUu4qoK+godZTVNzy/PnL29WviJNO4aHJ8YbC1C01TMSamZk3I+PG7PFxWXRR9G6DBBtoUW2ZaL/Hn2deEVNbRNngWSP65yF3FVA32Fjpfjc6clloo+hcZfG+ZvHvoXWPEvI0fZVLgfeshwU1EzJ6VmetKpmWuymLKSkOrZFl5kWyry59nXcIXAoW3yLIr8cZW8iKsS6Cs8nTjXOHXVbuHnj5HSfQbTaGrrq+sCtYaoNbkFZ2tFH0wMY4Jsy1BkWxJK5Fl3uEL40DZ5Dj0l4ip/EVf50Vd4iknYG7XhhPCTZ9z1WlKZ8KZiTkrN9KRTL67dI/pgYhjVsy1JkW1JyJ9nX8MVwoe2yXPoyR9XJYq4yo++YpjKuutTlmUKP3OMVFr0UuFNxUBNXbX7xLlG0YcU3zJBtuUpsi2cEnn2uCVVqqFt8hxKSsRVlSKukqOvGOb1xP2R60uEnzZGyvHDn8rQVMxJqYnacOLl+FzRhxTfMkG25SmyLZwSeR7Yl0/WoW3yHDpKxFWVIq6So694oO7qrcnLMuaknBd+2oy7lq7MkaSpGKipq7Iq666LPrAwQ7ZlK7ItkCp59vUtjyRD2+Q5NFSJq0JFXGVGX/HAhuyTEdLM0o2vfH09JqSpmJNSE/nh52ttJaIPLMyQbdmKbAukRJ79jLrJM7RNnkNAibiqVcRVZvQV33K6XJOX2qKTK4SfMEZq8LEVMjQVc1JqordWTYpN77nfL/rwWpo5si1bkW1RVMmzr+EKqYa2yXOwqRJXtYq4yoy+4lsnzjWGr84RfrYYKV9/jfkqj6dxB6ki1+SxK5xYJsi2nEW2hVAlz75+PZZtaJs8B5UqcVWuiKu06Cu+9e72QtXHqsbx2IoQtBZRG47/fvNB0YfX0kyQbTmLbAuhSp59DVfINrRNnoNKlbgqV8RVWvQVbrfbfbu7d9KSnbO3nRN+qoy7xv3YimC3FrO3V09asvNmZ7fog2xRJsi2tEW2Q0+VPPu5IEs4tE2eg0SVuKpYxFVa9BVut9v9RcXlqPfzhZ8nRmp8j60ITWsxPf6z/Scvij7IFmWCbMtcZDvEVMmzn7tSJRzaJs9BokpcFS3iKif6Crfb7X4vvTjyoyLhJ4mRGsdjKwYmCAuefmnJytygri1qw7F3tx8RfZAtygTZlrnIdoipkuc94b9XaGibPAeJKnFVtIirnOgr3G63O3JV5qwt5cJPknHXOB5b8eWEpzb+blNolhe9teq52DSnyyX6OFuR/Nmuefxf1r69Q/gyyLYS5M/zQFU/8Qu1hrbJczCoEldFi7jKib7C3dTa+fzyDOFniJEa/WMrGn/w+M5Zsa8llYV4heFxWTWNraIPteUoke2BZNY8/i8h2PiYbCtNiTwPTbVCQ9vkOeAUiqu6RVwlRF/h3n/yYuT7B4SfHkZqxMdWhOZ+Jz81Lb7AVlgp+lBbjhLZHhrU1oe/r1x3QbZDRok8z0mpWftWqnJD2+Q54FSJq9JFXCVEX+F+e9thpbeB8//YilDe7+SnojaceGPTAdGH2nKUyLZ3aNXqLsh2yCiR5zm+hyskH9omz4GlSlyVLuIqIfoK9/TVWTM//lL46THu0n1shaj7nXxV9NaqKUttog+15SiRbV+fwFof/n721DfkyTDZFk6JPM/xPVwh+dA2eQ4sVeKqdBFXCVm9r3C6XE8vTp2Tcl746TG+8tglXfj9Tn7qudj0uz19og+4haiS7RFu4fur78nfXZDtEFAlz34iLfnQNnkOIJnjWvPYzxX6QZi4KsfqfUVTa+fUFbuEnxjjrsHHVkhyv5Ofily9x36lTfQBtxBR2X4tqWzt2zsGK33WkpwX5g9UyZMRNY/9fKAaH3l8lJsNyN9dkO0QUOVa7We4Qv6hbfIcKDLHdeD3tO6/+t6hp1/+Q3yh8PUQV5Oxel9RVtM07f19wk+McVfxLyOlut/JT82MP/hFxWXRB9xCApLtP8QXDnYIG+ZvHuwQcl6Yf/Yfnx5sElof/v7omwQjVfJkhIR/EZLtEFDlWu1nuEL+oW3yHCgyx9VjA8mz//i0Kskkrkqwel+Rc+x8ePxh4SeGFSrqw0L2bQgl72wvWZk72CRsfXXd0CZhsEOoeeznI24vJrxk6y7Idgiocq32NVzhVmFomzwHisxxHbzNYWi1Pvz99FlLlPiOkrhKzup9xQeZJ9ixIUQn/4YTq3YUiT7g5qEVFz+opCQtLu7bionRJk7UJk5s/MmE6r+bILwHCGp3IckoEdkOAVWu1b7aciWGtslzoMgcVz+36kl1XSWuirJ6XxGbcnR60inhJ4YVanrSqdcT94s+4DLSGhqGNQmDHUJcnBYRMdAkaBMnaj/6kfCP8hKWDI/rJtshoMS1eunKHF9BVWVomzwHhMxx9djuRbcaH3lcldlu4iobq/cVryful/bkN1nN/PhLK5z8WmXlgw4hL29YkzDYIUycqP31Xwv/RG6Oqnns58L7CotkWywlrtW6d5gMlCpD2+Q5IMTGdXDzjMH7XQf3zBjTLJwSs93EVTZW7ytiEvLYYTo0FZ1cMfO9PaIP+Nj4vNfozTeHNgnCP1tbs2ToKNTNtnKUuFbrPk1ooBQajSXPxgUvroM9w+BGGoeefnkcm+yNqWSe7SausrF6XxG5KjM6uUL4iWGFik6uiFyVKepAax0do7rX6Gc/E/5xmRqx5OkoZMi2RShxrfaz54EqQ9vkOSDGHdfBrTU8NtUIXs8w+pJztpu4yoa+IjN6a5XwE8MK9eKn555fFpjnYg4bSOBeIyuVbB1FwLMNX+S/VvsZrlBoaJs8B4RuXAd35PPeiE/4pXVMJdVsN3GVjdX7il8v+pPws8I69etFf/I+BMN+RkhL414jSrfk7Cj8ZxsBJP+12s9whUJD2+R5fB5M1iUlaXFxO/7P1MEn/Mi/c/dYq+GRJ6S6GhNXqdBXyP53lULl8aDloY9HGBgaq/zB49xrJLa6v/PdC4/982jqywlP5T7/u1HW2rdSR1m6yfG/Zsk7ioHiL7Zgk/9a7We4QqGhbfLs7cEv5IPffP3ndt5W+1X85sN/uzVGun2iiKtUrN5XyP/buqjy86Dloc9QC9mDliUv7dFHtX/911HVK69oq1aNqhITtaKiUVWlzlOBFMq2r3dViY5iDj/Eh4T8efbztbS0M6/k+cHonXfPwNbeQ6r7O9/NeWG+8HBaPK5KoK9QYBbQePl60PLgPhLS/lyr/cM/jPbz+h/+MNrP6zt2jPbzekOD6ISOn0LZ9j7uqnQUA8XgYAhInuc344/4uY4pNLRtpjw/6BkGx/AGb6/lZ/OxVM4L82Ub1zZfXE3D6n1FTELerC3lwk+M4NXWV9fpXiZGeTPMhcf+efQ3w2z83SY/N8C89+a21TGrvv283tEh+sibn0LZVrejGCg2OgwByfPs60rrVm1oW6E86+zvR88Q6Dr2ZLjkz69QJa7WYfW+QolnLZmjeHhNiCmUbXU7CrIdMpLnufiXUb4+mSk3tC1Dnh+MQXvt9Sf8o7ZFquaxn8uz6ZPkccVQVu8r3tlWKPPfVWaq6UmnOPlDSaFsq9tRkO2QkSrPjh/+pOaxnx96+uX0WUvWvr3jtaSy1r/5ga/PZ8oNbQc7zx5bJw17iJDFxqDHXTcf/luPOwsKnn5pxDsIBg9x93e+6+c/Ltt2T2LjirGyel/xQeaJqA3HhJ8YVqhpiaXLU4+KPuAWQrbJtplIlWc/v054l1pD2wbzzNZJ/st7Rz7vnfe2xqzz6AcCfidS9RO/8NWuSLjdU/DiimCwel+Rc+x8ePxh4SeGFSoq4fM/HyoXfcAthGyTbTORKs9+pim8S62hbT95tvjWSTqbiHhvFvKfe36UJKYuey3B187awuvgM694Nzxybvc07rhCFKv3FWU1TdPezxd+YlihZn74WWF5negDbiFkm2ybiVR59vNobe9qffj7h55+WfJb1QefPrRh/uY9/za7/j8WmGbrJC0sbOTNvr03CTS2GaBUcfUuj2c4yrzd04jF5Vc2Vu8rmlo7w1dlCT8xrFBR72XXNLaKPuAWQrbJtpnIlmf/d6jL1mB4P650YG/xxkceF/65319L4P0Tgfe+4aN4mE/oyRZXzzy8lTrwDsu/3dOIxeVXNlbvK5wu19OLJf2l0mT1XGz67e5e0QfcQsg22TYT2fLs5+na/qvkyYjArmTw8UTejy4V1g94Pyd0ND8RmGj/cdni6lGvJZWpst3TiMXlVzZW7yvcbvf01Vkyb4tujnrx06pJsemiD7XlkG2ybSZS5dnjTpJRVsMjT4zphpPBniF91pKBnuHsPz4d1MeY1vyP//31I4/7+4kgMVHOnwhkI1VczVpcfiVEX+F+e9thebYZMWtNSzz5xqYDog+15ZBtsm0mUuV5TCMWA9X9ne8O/Yb4D/GFAz3D1lfXDfQMJU9GjLtn8N549NiT4SNuPOrd5JDnQJEqrmYt4ioh+gp3zrHzkesOCj89zF3TEg6nHf5K9KG2HLJNts1EtjyPdcRi66sPdvAcuqPUiBuP7pwVG+yNR8lzwMkWV1MWcZUQfYW7qbXz+eUZwk8Pc1fk6j3nHDdEH2rLIdtk20xky7OvhwDoVsDHKsiz5GSLqymLuEqIvsLtdrufX2aLTq4QfoaYtV789Nyz76Y5XS7Rx9mKyDbZNhOp8rwn/PdBGqsgz+YgVVzNV8RVTvQVbrfb/V56ccRHRcJPErNW1IZjb209LPogWxTZJttmIlWeBzfrHNNYhcxFngNLqriar4irnOgr3G63u+BsbZTEj7BRvabHf5Zz7Lzog2xRZJtsm4lseR7rWIXkRZ4DS7a4mqyIq5zoK9xut7u9q+fZd9Nmb68Wfp6Ysc5PWWq72nZH9EG2KLJNts1EtjyPOGKhylgFeQ4G2eJqriKukqKv+Nai5MOR60tEnycmrGmJpa9vzBd9eC2NbJNtM5Eqz/5HLFQZqyDPwSNVXM1UxFVa9BXfKqlyRLynxi2watW09/MPnrKLPryWRrbJtplIlWc/IxYKjVWQ5+CRKq5mKuIqLfqKb/V945y81BadXCn8bDFTDTwLs+d+v+jDa2lkm2ybiVR5fi2pzARjFeQ5eKSKq2mKuMqMvuKBD3cdj/gwWA8bsmZFffTFqh1fiD6wINtk21SkyrPjhz9RfKyCPAeXVHE1RxFXmdFXPFDT2Dp5WcaclPPCzxnTVHjc7jMXm0UfWJBtsm0qUuX54DOvKD1WQZ6DTaq4mqOIq8zoK4Z5PXF/1IZjws8Zc9S0xNKX43NFH1J8i2yTbTORJ88b5m9WeqyCPIeAPHE1QRFXydFXDHPiXOPUVbuFnzbmqKg1uYXldaIPKb5Ftsm2mciTZ48RC7XGKshzaMgTVxMUcZUcfYWnl+NzozacEH7mqF7Tk07NXJPldLlEH088QLbJtpnIk+fBEQvlxirIc8jIE1eli7jKj77CU0mVY2pctvCTR/WKWruPPeBkQ7bJtpnIk+fiX0YpOlZBnkNGnrgqXcRVfvQVnpwu14z3sqYnnRJ+/qhbMzafnbrc1veNU/TBxDBkm2ybiTx53vrqOhXHKshzKMkTV3WLuCqBvkJHSZXjhRW72L1hvHU+cnU23yjIiWyTbTORJM9vxh9RcayCPIeYJHFVtoirGugr9L219XAUG06Pq6L+WDQvcb/oAwifyDbZNhPyTJ4VQlyJq+nRV+hrab87ecnO6OQK4eeSWhW9tWpS7M6m1k7RBxA+kW2ybSbkmTwrhLgSV9Ojr/Bp1xfnIt7bK/x0Uqui3s/fduBL0YcOIyDbZNtMyDN5VghxJa7mRl/hk9Plejk+N3J9ifAzSpWallg6470sZqrkR7bJtpmQZ/KsEOJKXM2NvsKfuqu3Ji3ZOWvLV8LPK/krOrly8lLbOccN0QcNo0K2ybaZkGfyrBDiSlxNjL5iBPmlF19YuXv29mrhZ5fcdX5qXHbG51WiDxfGgGyTbTMhz+RZIcSVuJoVfcXIVqQejVj3meizS+qK/PDIoi2HRB8ojBnZJttmQp7Js0KIK3E1JfqKkfXc75/xXlbUhmPCzzE5a1riyYiVf7nd3Sv6QGHMyDbZNhPyTJ4VQlyJqynRV4xK3dVbz8Wmz9h8WviZJlvN2lI+KXYn9z6qi2yTbTMhz+RZIcSVuJoPfcVolVQ5pizLmLWlXPj5Jk9FJ1dOWrKz4Gyt6IMDQ8g22TYT8kyeFUJciavJ0FeMQX7pxcnLMqK3Vgk/62So6K1Vzy/flV1yXvRhQQCQbbJtJuSZPCuEuBJXM6GvGJudhZVTlu968dNzws89sTV727mpcdmbcstEHxAEDNkm22ZCnsmzQogrcTUN+oox25h98oVVe2Zvs+75P3vbuRdW7VlrKxF9KBBgZJtsmwl5Js8KIa7E1RzoK8bjj7tLpyzfZc1fLaO3Vk2Ny16dVuR0uUQfBwQe2SbbZkKeybNCiCtxNQH6inHacbhi0lKb1WatZm356oUVuz7Zd0b0248gItswE/IMhRBXqI6+YvwOlNknLbFZZ4e4mR+fnbTExjSVFZBtmAl5hkKIK5RGX2HIiXONU5barPBcm6gNJ56LTS+pcoh+yxEiZBtmQp6hEOIKddFXGFV39dbM97Ii1h2cvb1a+CkanDofFX8oclUmT6ixGrINMyHPUAhxhaLoKwKg537/itSjL6zcPWvLV6JP1ABXdHJleFz24uRDt7t7Rb/NEIBsw0zIMxRCXKEi+oqAyS+9OCl2Z9SG48LP2EDVtMTSKUttf/m8SvRbC8HINsyEPEMhxBVqoa8IpLqrt15cuyfq/X3RyRXCT10jFZ1cOX3d/plrsviBEgPINsyEPEMhxBUKoa8IMKfL9ZfPqyYvtU1P+FzN2yLPT0sonLzUtvNIZd83TtFvJyRCtmEm5BkKIa5QBX1FUNzs7F6144sXVmROSywVfTKPoaYnlU1dmbU4+VBL+13RbyEkRbZhJuQZCiGukB99RRCVX7r2Unx2RNzuqA0n5qScF35u+6moDSciV2fPXJN14lyj6LcNCiDbMBPyDIUQV8iMviLoTpxrfO2P+55fnhm1vkS+ny/PR64vCV+V9cqHe0uqHE6XS/S7BZWQbZgJeYZCiCvkRF8RIpV11xdtOTRpiS0i/rAMe8ZFJ1dEflj4/PK/vLHpwJmLzaLfHiiMbMNMyDMUQlwhG/qKkKq7emtTbtmUpbbwuOyIhKMvfloV4nP+xU+rIj8qilidPWWpLSHreE1jq+i3BCZBtmEm5BkKIa6QB32FAE6X68S5xqUpn//7u2kR7+2NSDg68+OzQT3nZ20pj0g4Grlm37+/m/bu9iMlVQ42ZEAwkG2YCXmGQogrZEBfIdLdnr6Cs7VrbSVRcZmTl9qmr9sf+VHRrC3lAZnEmrWlPHJ9yfR1+ycvtU1dnrFqxxcHT9l5tiVCg2zDTMgzFEJcIRB9hSyaWjv3n7y4ascXM1ZnPb04NXxl1swP8qM+LIj4qGh60qkZm09HJ1cM1ODpPfgnMzafnp50KnJ9ybQPD8/8ID9y9e6nF6fOWJ21ascX+09ebGrtFP0/B0sj2zAT8gyFEFeEGH2FjJwuV1NrZ1lNU86x8xv2nFzw8WevJ+5/9aO8yFWZkasy/+2t1F8v+tO/vZU68I+vfpT3euL+BR9/tmHPyZxj58tqmppaO9l+AXIi2zAT8gyFEFeEAH0FAAAAAKPoKwAAAAAYRV8BAAAAwCj6CgAAAABG0VcAAAAAMIq+AgAAAIBR9BUAAAAAjKKvAAAAAGAUfQUAAAAAo+grAAAAABhFXwEAAADAKMNcjW8AAAJqSURBVPoKAAAAAEbRVwAAAAAwir4CAAAAgFH0FQAAAACMoq8AAAAAYBR9BQAAAACj6CsAAAAAGEVfAQAAAMAo+goAAAAARtFXAAAAADCKvgIAAACAUfQVAAAAAIyirwAAAABgFH0FAAAAAKPoKwAAAAAYRV8BAAAAwCj6CgAAAABG0VcAAAAAMIq+AgAAAIBR9BUAAAAAjKKvAAAAAGAUfQUAAAAAo+grAAAAABhFXwEAAADAKPoKAAAAAEbRVwAAAAAwir4CAAAAgFH0FQAAAACMoq8AAAAAYBR9BQAAAACj6CsAAAAAGEVfAQAAAMAo+goAAAAARtFXAAAAADCKvgIAAACAUfQVAAAAAIyirwAAAABgFH0FAAAAAKPoKwAAAAAYRV8BAAAAwCj6CgAAAABG0VcAAAAAMIq+AgAAAIBR9BUAAAAAjKKvAAAAAGAUfQUAAAAAo+grAAAAABhFXwEAAADAKPoKAAAAAEbRVwAAAAAwir4CAAAAgFH0FQAAAACMoq8AAAAAYBR9BQAAAACj6CsAAAAAGEVfAQAAAMAo+goAAAAARtFXAAAAADCKvgIAAACAUfQVAAAAAIyirwAAAABgFH0FAAAAAKPoKwAAAAAYRV8BAAAAwCj6CgAAAABG0VcAAAAAMIq+AgAAAIBR9BUAAAAAjKKvAAAAAGAUfQUAAAAAo+grAAAAABhFXwEAAADAKPoKAAAAAEbRVwAAAAAwir4CAAAAgFH0FQAAAACMoq8AAAAAYBR9BQAAAACj6CsAAAAAGEVfAQAAAMAo+goAAAAARtFXAAAAADCKvgIAAACAUf8fMbE9TiyHmQ4AAAAASUVORK5CYII=" alt="" width="697" height="437" />
每一个节点下一层的节点入队之后就把这个节点出队
对每一个节点 bfs的顺序是这样的
1.将这个节点的左节点入队(要判断左节点是否已经入队以及是否合适)
2.将这个节点的右节点入队(同样也要盘算右节点是否已经入队以及是否满足条件)
3.判断该节点是否满足条件 如果满足 就return(这时候一定是最短路径因为是一层一层分析的)
4.将该节点出队
当所有的节点都出队时说明已经把所有可能的路径都遍历了一遍(有关结束时机的判断还是有点疑问:这个题目当中是当没有合适的子节点时队列就空了 那么有没有可能出现超限或者死循环的情况呢?)
下面贴代码(模仿的)
# include<iostream>
# include<queue> using namespace std; const int MAX_NUM = ; struct node
{
int floor;
int step;
}; queue<node>note;
int vis[MAX_NUM];
int k[MAX_NUM];
int A,B, N; struct node temp,m; int bfs()
{
struct node start;
start.floor = A;
start.step = ; note.push(start);
vis[start.floor] = ; while (!note.empty())//结束的时机要想清楚
{
temp = note.front();//临时变量的引入,使程序逻辑性更清晰 int up = temp.floor + k[temp.floor];
if (up<=N&&vis[up]==)
{
vis[up] = ;
m.floor = up;
m.step = temp.step + ;
note.push(m);
}
int down = temp.floor - k[temp.floor];
if (down > && vis[down] == )
{
vis[down] = ;
m.floor = down;
m.step = temp.step + ;
note.push(m);
} if (temp.floor == B)
{
return temp.step;//不用考虑比较最小路径 这是和深搜不同的一点
} note.pop();
} return -;
} int main()
{
while ()
{
cin >> N;
if (N == )
break;
cin >> A >> B;
for (int i = ; i <= N; i++)
{
cin >> k[i];
} memset(vis, , sizeof(vis));
while (!note.empty())
{
note.pop();
}
/*将队列和访问标记初始化*/ cout << bfs() << endl;
} return ;
}
算法的路还有很长 搜索只是刚刚入门啊!
第一次广搜!HDU1548--A Strange Lift的更多相关文章
- HDU1548——A strange lift(最短路径:dijkstra算法)
A strange lift DescriptionThere is a strange lift.The lift can stop can at every floor as you want, ...
- HDU1548:A strange lift
A strange lift Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other) Tota ...
- HDU-1548 A strange lift(单源最短路 或 BFS)
Problem Description There is a strange lift.The lift can stop can at every floor as you want, and th ...
- Hdu1548 A strange lift 2017-01-17 10:34 35人阅读 评论(0) 收藏
A strange lift Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other) Tota ...
- hdu1548 A strange lift(bfs 或Dijkstra最短路径)
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #d ...
- HDU 1548 A strange lift (广搜)
题目链接 Problem Description There is a strange lift.The lift can stop can at every floor as you want, a ...
- 杭电 1548 A strange lift(广搜)
http://acm.hdu.edu.cn/showproblem.php?pid=1548 A strange lift Time Limit: 2000/1000 MS (Java/Others) ...
- hdu 1548 A strange lift 宽搜bfs+优先队列
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1548 There is a strange lift.The lift can stop can at ...
- HDU 1548 A strange lift (bfs / 最短路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1548 A strange lift Time Limit: 2000/1000 MS (Java/Ot ...
随机推荐
- c# 高效的线程安全队列ConcurrentQueue
c#高效的线程安全队列ConcurrentQueue<T>(上) c# 高效的线程安全队列ConcurrentQueue(下) Segment类 c#高效的线程安全队列Concurrent ...
- (原创)android6.0系统 PowerManager深入分析(很具体)
概述 一直以来,电源管理是电子产品设计中很重要的环节.也是不论什么电子设备中最为重要的系统模块之中的一个,优秀的电源管理方案.可以提供持久的续航能力,良好的用户体验.更能提升电子产品的竞争力. 移动设 ...
- 使用802.1X+FreeRadius+LDAP实现网络准入方案
前言:在很多运维项目交流中,我们发现有一些运维团队还是在尝试使用网管或桌面管理来进行网络准入管理,但这两个技术有一定的缺点,所以本文分享一下802.1X+开源软件整合的网络准入管理的实践. 网络准入业 ...
- 再谈API GateWay服务网关
前面在谈微服务架构的时候,我博客上转过Chris Richardson 微服务系列中对微服务网关的描述: 通常来说,使用 API 网关是更好的解决方式.API 网关是一个服务器,也可以说是进入系统的唯 ...
- spring 发布 Jax-Ws Service (二)
Service import javax.jws.WebMethod; import javax.jws.WebParam; import javax.jws.WebResult; import ja ...
- Ubuntu/Debian交叉编译安装ARM平台版本的ffmpeg
1 准备工作 (1)libmp3lame库 下载: wget http://downloads.sourceforge.net/lame/lame-3.99.tar.gz 解压 编译:./con ...
- XML-RPC使用手册
内容列表 Preface: About This Manual Introduction to XML-RPC for C/C++ What is XML-RPC? How Does XML-RPC ...
- Javascript中暂停功能的实现
<script language="javascript"> /*Javascript中暂停功能的实现 Javascript本身没有暂停功能(sleep不能使用)同时 ...
- Hive三种不同的数据导出的方式
转自:http://blog.chinaunix.net/uid-27177626-id-4653808.html Hive三种不同的数据导出的方式,根据导出的地方不一样,将这些方法分为三类:(1)导 ...
- java.util下有一个Comparator(比较器)
java.util下有一个Comparator(比较器) 它拥有compare(),用来比较两个方法. 要生成比较器,则用Sort中Sort(List,List(Compate)) 第二种方法更灵活, ...