题目链接:

Dertouzos

Time Limit: 7000/3500 MS (Java/Others)    

Memory Limit: 131072/131072 K (Java/Others)

Problem Description
A positive proper divisor is a positive divisor of a number n, excluding n itself. For example, 1, 2, and 3 are positive proper divisors of 6, but 6 itself is not.

Peter has two positive integers n and d. He would like to know the number of integers below n whose maximum positive proper divisor is d.

 
Input
There are multiple test cases. The first line of input contains an integer T (1≤T≤106), indicating the number of test cases. For each test case:

The first line contains two integers n and d (2≤n,d≤109).

 
Output
For each test case, output an integer denoting the answer.
 
Sample Input
9
10 2
10 3
10 4
10 5
10 6
10 7
10 8
10 9
100 13
 
Sample Output
1
2
1
0
0
0
0
0
4
 
题意:
 
就是给一个n和一个d,问有多少个小于n的数的最大因子是d;
 
思路:
 
个数为min((n-1)/d,d')d'为d的最小质因子;
素数筛,然后枚举最小质因子,当时忘加一个条件最后测的时候t了;
 
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
//#include <bits/stdc++.h>
#include <stack> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=1e5+10;
const int maxn=500+10;
const double eps=1e-8; int prime[N],sum[N],a[N],cnt=0,n,d;
void Init()
{
sum[1]=0;
For(i,2,N-maxn)
{
if(!prime[i])
{
for(int j=2*i;j<N-maxn;j+=i)
{
prime[j]=1;
}
sum[i]=sum[i-1]+1;
}
else sum[i]=sum[i-1];
}
For(i,2,N-maxn)
{
if(!prime[i])a[++cnt]=i;
}
} inline int check(int x)
{
for(int i=1;i<=cnt;i++)
{
if(x%a[i]==0)return a[i];
if((LL)a[i]*a[i]>x||a[i]>n/d)break;
}
return x;
}
int main()
{
int t;
read(t);
Init();
while(t--)
{
read(n);read(d);
n--;
int le=min(check(d),n/d);
printf("%d\n",sum[le]);
} return 0;
}

  

 

hdu-5750 Dertouzos(数论)的更多相关文章

  1. hdu 5750 Dertouzos 素数

    Dertouzos Time Limit: 7000/3500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  2. BestCoder HDU 5750 Dertouzos

    Dertouzos 题意: 有中文,不说. 题解: 我看了别人的题解,还有个地方没懂, 为什么是 if(d%prime[i]==0) break; ? 代码: #include <bits/st ...

  3. HDU 5750 Dertouzos

    Dertouzos Time Limit: 7000/3500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  4. HDU 5750 Dertouzos 简单数学

    感悟:这又是zimpha巨出的一场题,然后04成功fst(也就是这题) 实际上还是too young,要努力增加姿势, 分析:直接枚举这些数不好枚举,换一个角度,枚举x*d,也就是d的另一个乘数是多少 ...

  5. 题解报告:hdu 5750 Dertouzos(最大真约数、最小素因子)

    Problem Description A positive proper divisor is a positive divisor of a number n, excluding n itsel ...

  6. hdu 5750(数论)

    Dertouzos Time Limit: 7000/3500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  7. 【HDU 5750】Dertouzos(数学)

    题目给定n和d,都是10的9次方以内,求1到n里面有几个数最大因数是d?1000000组数据.解:求出d的满足p[i]*d<n的最小质因数是第几个质数.即为答案. #include<cst ...

  8. hdu GuGuFishtion 6390 数论 欧拉函数

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=6390 直接开始证明: 我们设…………………………………….....…...............………… ...

  9. HDU 1299 基础数论 分解

    给一个数n问有多少种x,y的组合使$\frac{1}{x}+\frac{1}{y}=\frac{1}{n},x<=y$满足,设y = k + n,代入得到$x = \frac{n^2}{k} + ...

  10. HDU 5317 RGCDQ (数论素筛)

    RGCDQ Time Limit: 3000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Submit Status ...

随机推荐

  1. JavaEETest

    原文:https://github.com/lenve/JavaEETest

  2. scp 时出现permission denied

    如果scp到 /usr/local/目录下,则无权限,可更改到用户目录下

  3. Win7如何自定义鼠标右键菜单 添加新建EXCEL文档

    鼠标右键添加新建EXCEL文档.reg Windows Registry Editor Version 5.00 [HKEY_CLASSES_ROOT\.xls] "Content Type ...

  4. 安装mongoDB遇见的一个路径问题

    如果安装路径不存在,则不会解压EXE软件! 安装monogoDB后,它不会自动添加执行路径! 意思就是安装路径是D盘下面的mongoDB文件夹,假如不存在这个文件夹,则不会安装成功 你需要添加路径: ...

  5. 如何防范SQL注入式攻击

    一.什么是SQL注入式攻击? 所谓SQL注入式攻击,就是攻击者把SQL命令插入到Web表单的输入域或页面请求的查询字符串,欺骗服务器执行恶意的SQL命令.在某些表单中,用户输入的内容直接用来构造(或者 ...

  6. C# trim split dataGrid

    C#中Trim().TrimStart().TrimEnd()的用法:     这三个方法用于删除字符串头尾出现的某些字符.Trim()删除字符串头部及尾部出现的空格,删除的过程为从外到内,直到碰到一 ...

  7. gridcontrol复选框功能实现(超具体)

    博主这几天就准备离职了,以后不再做.Net开发.因此这应该是我写的最后一篇关于dev控件的博文.既然是最后一篇,那就写的具体一些.画个圆满的省略号...... 本文介绍gridcontrol怎样实现复 ...

  8. hbase shell删除没实用

    用Xshell登陆linux主机后,在hbase shell下不能使用backspace和delete删除误输的指令,这是Xshell的配置问题: 在File->Properties->T ...

  9. Android中通过GPS或NetWork获取当前位置的经纬度

    今天在Android项目中要实现一个通过GPS或NetWork来获取当前移动终端设备的经纬度功能.要实现该功能要用到Android Framework 中的 LocationManager 类.下面我 ...

  10. Operation not permitted - /usr/bin/pod

    问题描述:执行sudo gem install cocoapods, 提示出错:While executing gem ... (Errno::EPERM)     Operation not per ...