Distance Queries
Time Limit: 2000MS   Memory Limit: 30000K
Total Submissions: 11304   Accepted: 3985
Case Time Limit: 1000MS

Description

Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in "Navigation Nightmare",followed by a line containing a single integer K, followed by K "distance queries". Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ's distance queries as quickly as possible! 

Input

* Lines 1..1+M: Same format as "Navigation Nightmare"

* Line 2+M: A single integer, K. 1 <= K <= 10,000

* Lines 3+M..2+M+K: Each line corresponds to a distance query and contains the indices of two farms.

Output

* Lines 1..K: For each distance query, output on a single line an integer giving the appropriate distance. 

Sample Input

7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6
1 4
2 6

Sample Output

13
3
36
学习LCA的好文章:http://taop.marchtea.com/04.04.html
离线:将所有查询输入完毕后再统一输出结果。
在线:查询一个输出一个。 dfs+并查集,离线
#include <cstdio>
#include <vector>
using namespace std;
const int MAXN=;
int n,m,k;
struct Edge{
int to,w;
Edge(){}
Edge(int to,int w)
{
this->to=to;
this->w=w;
}
};
vector<Edge> arc[MAXN]; struct Node{
int to,id;
Node(){}
Node(int to,int id)
{
this->to=to;
this->id=id;
}
};
vector<Node> que[MAXN]; int par[MAXN];
void prep()
{
for(int i=;i<MAXN;i++)
{
d[i]=;
vis[i]=;
par[i]=i;
}
}
int fnd(int x)
{
if(par[x]==x)
{
return x;
}
return par[x]=fnd(par[x]);
}
void unite(int fa,int son)
{
int a=fnd(fa);
int b=fnd(son);
par[b]=a;
} int vis[MAXN],d[MAXN];
int res[MAXN];
void tarjan(int u)
{
vis[u]=;
for(int i=,size=que[u].size();i<size;i++)
{
Node nod=que[u][i];
if(vis[nod.to])
{
int lca=fnd(nod.to);
res[nod.id]=d[nod.to]+d[u]-*d[lca];
}
}
for(int i=,size=arc[u].size();i<size;i++)
{
Edge e=arc[u][i];
if(!vis[e.to])
{
d[e.to]=d[u]+e.w;
tarjan(e.to);
unite(u,e.to);
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
prep();
for(int i=;i<=n;i++) arc[i].clear();
for(int i=;i<m;i++)
{
int u,v,w;
scanf("%d %d %d %*c",&u,&v,&w);
arc[u].push_back(Edge(v,w));
arc[v].push_back(Edge(u,w));
}
scanf("%d",&k);
for(int i=;i<k;i++)
{
int u,v;
scanf("%d%d",&u,&v);
que[v].push_back(Node(u,i));
que[u].push_back(Node(v,i));
}
for(int i=;i<=n;i++)
{
if(!vis[i])
{
tarjan(i);
}
}
for(int i=;i<k;i++)
{
printf("%d\n",res[i]);
}
}
return ;
}
模板:RMQ求LCA在线算法(稀疏表实现RMQ)
#include <cstdio>
#include <cstring>
#include <vector>
#include <math.h>
#include <algorithm>
using namespace std;
const int MAXN=;
int n,m,k;
struct Edge{
int to,w;
Edge(){}
Edge(int to,int w)
{
this->to=to;
this->w=w;
}
};
vector<Edge> arc[MAXN]; int vs[MAXN+MAXN],depth[MAXN+MAXN],first[MAXN],tot;
int d[MAXN],vis[MAXN];
void dfs(int u,int dep)
{
vis[u]=;
vs[++tot]=u;
depth[tot]=dep;
first[u]=tot;
for(int i=,size=arc[u].size();i<size;i++)
{
Edge e=arc[u][i];
if(!vis[e.to])
{
d[e.to]=d[u]+e.w;
dfs(e.to,dep+);
vs[++tot]=u;
depth[tot]=dep;
}
}
} int dp[MAXN+MAXN][];
void init_st(int size)
{
for(int i=;i<=size;i++) dp[i][]=i;
for(int j=;j<;j++)
{
for(int i=;i<=size;i++)
{
if(i+(<<j)-<=size)
{
int a=dp[i][j-];
int b=dp[i+(<<(j-))][j-];
dp[i][j]=depth[a]<depth[b]?a:b;
}
}
}
}
int rmq_st(int l,int r)
{
int limit=(int)(log(r-l+1.0)/(log(2.0)));
int a=dp[l][limit];
int b=dp[r-(<<limit)+][limit];
return depth[a]<depth[b]?a:b;
} int LCA(int u,int v)
{
if(first[u]>first[v]) swap(u,v);
int id=rmq_st(first[u],first[v]);
return vs[id];
} int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
tot=;
memset(vis,,sizeof(vis));
memset(d,,sizeof(d));
for(int i=;i<=n;i++) arc[i].clear();
for(int i=;i<m;i++)
{
int u,v,w;
scanf("%d %d %d %*c",&u,&v,&w);
arc[u].push_back(Edge(v,w));
arc[v].push_back(Edge(u,w));
}
for(int i=;i<=n;i++)
{
if(!vis[i])
{
dfs(i,);
}
}
init_st(tot);
scanf("%d",&k);
for(int i=;i<k;i++)
{
int u,v;
scanf("%d%d",&u,&v);
int lca=LCA(u,v);
int res=d[u]+d[v]-*d[lca];
printf("%d\n",res);
}
}
return ;
}
												

POJ1986(LCA应用:求两结点之间距离)的更多相关文章

  1. hdoj 1869 六度分离【最短路径求两两边之间最长边】

    六度分离 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  2. 求两个数之间的质数 -----------基于for循环 算法思想

    前端代码: <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.as ...

  3. js求连个数之间的数字

    整理出自项目中一个需求,求两个数之间的数字. const week = function(arr,arr2){ let a=parseInt(arr); let b=parseInt(arr2); l ...

  4. 「POJ-3608」Bridge Across Islands (旋转卡壳--求两凸包距离)

    题目链接 POJ-3608 Bridge Across Islands 题意 依次按逆时针方向给出凸包,在两个凸包小岛之间造桥,求最小距离. 题解 旋转卡壳的应用之一:求两凸包的最近距离. 找到凸包 ...

  5. 求两点之间距离 C++

    求两点之间距离(20 分) 定义一个Point类,有两个数据成员:x和y, 分别代表x坐标和y坐标,并有若干成员函数. 定义一个函数Distance(), 用于求两点之间的距离.输入格式: 输入有两行 ...

  6. 旋转卡壳求两个凸包最近距离poj3608

    #include <iostream> #include <cmath> #include <vector> #include <string.h> # ...

  7. JavaScript求两个数字之间所有数字的和

    这是在fcc上的中级算法中的第一题,拉出来的原因并不是因为有什么好说的,而是我刚看时以为是求两个数字的和, 很显然错了.我感觉自己的文字理解能力被严重鄙视了- -.故拉出来折腾折腾. 要求: 给你一个 ...

  8. GPS(2)关于位置的3个示例,实时获取GPS定位数据,求两个经纬点距离,邻近某个区域圆时警告

    实时获取GPS定位数据 import android.app.Activity; import android.content.Context; import android.location.Loc ...

  9. js 求两个日期之间相差天数

    //求两个日期之间的相差天数 function daysBetween(DateOne, DateTwo) { var OneMonth = DateOne.substring(5, DateOne. ...

随机推荐

  1. CxImage新手教程,图文并茂

    作为一个游戏client程序猿,须要对图像处理有一定的知识. CxImage是C++实现的功能强大的.能处理多种文件格式的图像管理类.它可以简单高速的实现图像的导入.保存.显示和变换. 同一时候又具有 ...

  2. Paxos算法学习

    早在1990年,Leslie Lamport(即 LaTeX 中的"La",微软研究院科学家,获得2013年图灵奖)向ACM Transactions on Computer Sy ...

  3. 小东和三个朋友一起在楼上抛小球,他们站在楼房的不同层,假设小东站的楼层距离地面N米,球从他手里自由落下,每次落地后反跳回上次下落高度的一半,并以此类推知道全部落到地面不跳,求4个小球一共经过了多少米?(数字都为整数) 给定四个整数A,B,C,D,请返回所求结果。

    include #include<vector> using namespace std; class Balls { public: int calcDistance(int A, in ...

  4. ios math.h 常用数学函数

    1. 三角函数  double sin (double);正弦  double cos (double);余弦  double tan (double);正切  2 .反三角函数  double as ...

  5. TP框架---thinkphp模型

    1.获取系统常量信息的方法:在控制器DengLuController里面下写入下面的方法,然后调用该方法. public function test() { //echo "这是测试的&qu ...

  6. 【BZOJ3091】城市旅行 LCT

    [BZOJ3091]城市旅行 Description Input Output Sample Input 4 5 1 3 2 5 1 2 1 3 2 4 4 2 4 1 2 4 2 3 4 3 1 4 ...

  7. 绿色版Tomcat的配置

    在环境变量中不配置JAVA_HOME或者JRE_HONE的情况下(正确配置java的路径)不影响java的使用 可以正常使用 java -version .... 但是这种情况下 无法在Tomcat的 ...

  8. Dubbo服务集群,常见容错机制:failover ,failsafe,failfase ,failback,forking

    http://blog.csdn.net/hongweigg/article/details/52925920 http://m.blog.csdn.net/article/details?id=51 ...

  9. 九度OJ 1061:成绩排序 (排序)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:17158 解决:4798 题目描述: 有N个学生的数据,将学生数据按成绩高低排序,如果成绩相同则按姓名字符的字母序排序,如果姓名的字母序也相 ...

  10. Javascript模块化编程-初识[1]

    JS模块化编程,已经成为一个迫切的需求.理想情况下,开发者只需要实现核心业务逻辑,其他都可以加载别人已经写好的模块. 但是,JS不是一种模块化编程语言,它不支持类,所以没有严格意义上的模块.为了实现模 ...