Nearest Common Ancestors POJ - 1330 (LCA)
Nearest Common Ancestors
Description A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:
For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y. Write a program that finds the nearest common ancestor of two distinct nodes in a tree. Input The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.
Output Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.
Sample Input 2 Sample Output 4 Source |
题意:给出n个点,n-1条边的树,求lca(u,v);
思路:LCA
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#include<map>
using namespace std;
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int MAXN=;
const int DEG=; struct Edge{
int to,next;
}edge[MAXN*];
int head[MAXN],tot;
void addedge(int u,int v){
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
}
void init(){
tot=;
memset(head,-,sizeof(head));
}
int fa[MAXN][DEG]; //fa[i][j]表示结点i的第2^j个祖先
int deg[MAXN]; //深度数组 void bfs(int root){
queue<int>que;
deg[root]=;
fa[root][]=root;
que.push(root);
while(!que.empty()){
int tmp=que.front();
que.pop();
for(int i=;i<DEG;i++)
fa[tmp][i]=fa[fa[tmp][i-]][i-];
for(int i=head[tmp];i!=-;i=edge[i].next){
int v=edge[i].to;
if(v==fa[tmp][])continue;
deg[v]=deg[tmp]+;
fa[v][]=tmp;
que.push(v);
}
}
}
int LCA(int u,int v){
if(deg[u]>deg[v])swap(u,v);
int hu=deg[u],hv=deg[v];
int tu=u,tv=v;
for(int det=hv-hu,i=;det;det>>=,i++)
if(det&)
tv=fa[tv][i];
if(tu==tv)return tu;
for(int i=DEG-;i>=;i--){
if(fa[tu][i] == fa[tv][i])continue;
tu=fa[tu][i];
tv=fa[tv][i];
}
return fa[tu][];
}
bool flag[MAXN];
int main(){
int T,n,u,v;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
init();
memset(flag,false,sizeof(flag));
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
flag[v]=true;
}
int root;
for(int i=;i<=n;i++)
if(!flag[i]){
root=i;
break;
}
bfs(root);
scanf("%d%d",&u,&v);
printf("%d\n",LCA(u,v));
}
}
Nearest Common Ancestors POJ - 1330 (LCA)的更多相关文章
- POJ 1330 (LCA)
http://poj.org/problem?id=1330 题意:给出一个图,求两个点的最近公共祖先. sl :水题,贴个模板试试代码.本来是再敲HDU4757的中间发现要用LCA, 操蛋只好用这 ...
- POJ 1330 Nearest Common Ancestors 倍增算法的LCA
POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...
- POJ 1330 Nearest Common Ancestors (最近公共祖先LCA + 详解博客)
LCA问题的tarjan解法模板 LCA问题 详细 1.二叉搜索树上找两个节点LCA public int query(Node t, Node u, Node v) { int left = u.v ...
- POJ 1330 Nearest Common Ancestors (模板题)【LCA】
<题目链接> 题目大意: 给出一棵树,问任意两个点的最近公共祖先的编号. 解题分析:LCA模板题,下面用的是树上倍增求解. #include <iostream> #inclu ...
- POJ 1330(LCA/倍增法模板)
链接:http://poj.org/problem?id=1330 题意:q次询问求两个点u,v的LCA 思路:LCA模板题,首先找一下树的根,然后dfs预处理求LCA(u,v) AC代码: #inc ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- POJ - 1330 Nearest Common Ancestors(基础LCA)
POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %l ...
- poj 1330 Nearest Common Ancestors(LCA 基于二分搜索+st&rmq的LCA)
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 30147 Accept ...
- POJ 1330 Nearest Common Ancestors (LCA,dfs+ST在线算法)
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14902 Accept ...
随机推荐
- $.ajax仿axios封装
适用于对老项目维护时,用习惯的axios不能使用的情况 基础封装: 保留 then 的回调.baseHref.method 传 post || get || etc, function ajax(ob ...
- 《给业余投资者的10条军规 (雪球「岛」系列) (闲来一坐s话投资》读书笔记
大多数进入股市的人,往往有着非一般的自信.比如,读了几本大师的书,就感觉自己掌握了什么秘笈,又恰逢账面浮盈,自信心更是前所未有的膨胀. 有人说,投资者不经过一轮牛熊转换是成熟不起来的. 古人早就有言, ...
- 二维数组的转置(java)
public class ShuZhuDaoZhi { public static void main(String[] args) { int data[][] = new int[][]{{1, ...
- JVM(二):垃圾回收
三个问题: 那些内存需要回收? -- 对象是否存活判断 什么时候回收? --垃圾回收触发条件 如何回收? --垃圾回收算法 垃圾回收应用 -- 理解GC日志.使用垃圾回收命令和工具 1. 判断 ...
- Thread.sleep 与Thread.currentThread.sleep
参考博客: https://blog.csdn.net/guangyinglanshan/article/details/51645053 公司项目近段时间要使用thread, 个人想去了解Threa ...
- 【硬盘整理】使用UltimateDefrag将常用文件放置在磁盘最外圈
使用方法未知.软件截图如下: 官方网站(英文):http://www.disktrix.com/ 汉化破解版V3.0下载地址:http://page2.dfpan.com/fs/7com9monca3 ...
- [Asp.Net] Form验证中 user.identity为false
这个方法可以是user.identity设置为true FormsAuthentication.SetAuthCookie(Username, true); 但是要开启form验证, 在配置文件中 & ...
- c++ vector & 二维数组 & MessageBox
vector: https://www.cnblogs.com/mr-wid/archive/2013/01/22/2871105.html c++ 二维数组: int **p; p = new in ...
- php之基础深入---类与对象篇
1.类的自动加载: spl_autoload_register()函数可以注册任意数量的自动加载器,当使用尚未被定义的类(class)和接口(interface)时自动去加载,这样可以避免includ ...
- OpenGL glReadPixels 转成 CImage
本来是一件很简单的事情,就是将View上使用OpenGL画出来的数据生成图片让其实现打印的功能,我们知道MFC提供打印的接口是不支持OpenGL的(至少我不清楚),必须将它转成GDI再画在Print的 ...