https://www.luogu.org/problemnew/show/P3865

题目背景

这是一道ST表经典题——静态区间最大值

请注意最大数据时限只有0.8s,数据强度不低,请务必保证你的每次查询复杂度为 O(1)O(1)

题目描述

给定一个长度为 NN 的数列,和 MM 次询问,求出每一次询问的区间内数字的最大值。

输入输出格式

输入格式:

第一行包含两个整数 N, MN,M ,分别表示数列的长度和询问的个数。

第二行包含 NN 个整数(记为 a_iai​),依次表示数列的第 ii 项。

接下来 MM行,每行包含两个整数 l_i, r_ili​,ri​,表示查询的区间为 [ l_i, r_i][li​,ri​]

输出格式:

输出包含 MM行,每行一个整数,依次表示每一次询问的结果。

输入输出样例

输入样例#1: 复制

8 8
9 3 1 7 5 6 0 8
1 6
1 5
2 7
2 6
1 8
4 8
3 7
1 8
输出样例#1: 复制

9
9
7
7
9
8
7
9

说明

对于30%的数据,满足: 1 \leq N, M \leq 101≤N,M≤10

对于70%的数据,满足: 1 \leq N, M \leq {10}^51≤N,M≤105

对于100%的数据,满足: 1 \leq N \leq {10}^5, 1 \leq M \leq {10}^6, a_i \in [0, {10}^9], 1 \leq l_i \leq r_i \leq N1≤N≤105,1≤M≤106,ai​∈[0,109],1≤li​≤ri​≤N

st[i][j] 表示 [ i,i+2^j ] 的区间最值

 #include <cstdio>

 #define max(a,b) (a>b?a:b)

 inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
}
const int N(1e5+);
int n,m,st[N][],log2[N],t; int Presist()
{
read(n),read(m);
for(int i=; i<=n; ++i)
read(st[i][]),log2[i]=(<<t+==i)?++t:t;
for(int j=; <<j<=n; ++j)
for(int i=; i+(<<j)<=n+; ++i)
st[i][j]=max(st[i][j-],st[i+(<<j-)][j-]);
for(int l,r,mid; m--; )
{
read(l),read(r); mid=log2[r-l+];
printf("%d\n",max( st[l][mid] , st[r-(<<mid)+][mid] ));
}
return ;
} int Aptal=Presist();
int main(int argc,char**argv){;}

洛谷—— P3865 【模板】ST表的更多相关文章

  1. 【洛谷】【st表+模拟】P1311 选择客栈

    [题目描述:] 丽江河边有n 家很有特色的客栈,客栈按照其位置顺序从 1 到n 编号.每家客栈都按照某一种色调进行装饰(总共 k 种,用整数 0 ~ k-1 表示),且每家客栈都设有一家咖啡店,每家咖 ...

  2. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  3. [算法模板]ST表

    [算法模板]ST表 ST表和线段树一样,都能解决RMQ问题(范围最值查询-Range Minimum Query). 我们开一个数组数组\(f[maxn][maxn\log_2]\)来储存数据. 定义 ...

  4. 洛谷 P3865 【模板】ST表

    P3865 [模板]ST表 题目背景 这是一道ST表经典题——静态区间最大值 请注意最大数据时限只有0.8s,数据强度不低,请务必保证你的每次查询复杂度为 O(1)O(1) 题目描述 给定一个长度为  ...

  5. [洛谷P3865]【模板】ST表

    题目大意:区间静态最大值 题解:ST表,zkw线段树 ST表: st[i][j]存[i,i+$j^{2}$-1]的最大值,查询时把区间分成两个长度相同的小区间(可重复) #include<cst ...

  6. skkyk:题解 洛谷P3865 【【模板】ST表】

    我不会ST表 智推推到这个题 发现标签中居然有线段树..? 于是贸然来了一发线段树 众所周知,线段树的查询是log(n)的 题目中"请注意最大数据时限只有0.8s,数据强度不低,请务必保证你 ...

  7. 洛谷 P3865 ST表

    ST表 ST表的功能很简单 它是解决RMQ问题(区间最值问题)的一种强有力的工具 它可以做到O(nlogn)预处理,O(1)查询最值 是一种处理静态区间可重复计算问题的数据结构,一般也就求求最大最小值 ...

  8. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  9. [模板]ST表浅析

    ST表,稀疏表,用于求解经典的RMQ问题.即区间最值问题. Problem: 给定n个数和q个询问,对于给定的每个询问有l,r,求区间[l,r]的最大值.. Solution: 主要思想是倍增和区间d ...

随机推荐

  1. leetcode-26-exercise_linked-list

    141. Linked List Cycle Given a linked list, determine if it has a cycle in it. 解题思路: 需要检查before和afte ...

  2. Java-basic-4-数据类型

    Number类 装箱:将内置数据类型作为包装类对象使用:拆箱:相反 public class test{ public static void main(String args[]) { // box ...

  3. leetcode-20-Dynamic Programming

    303. Range Sum Query - Immutable 解题思路: Note里说sumRange会被调用很多次..所以简直强烈暗示要做cache啊...所以刚开始,虽然用每次都去遍历数组求和 ...

  4. POJ:2342-Anniversary party(树形dp入门题目)

    传送门:http://poj.org/problem?id=2342 Anniversary party Time Limit: 1000MS Memory Limit: 65536K Descrip ...

  5. linux学习-主机的细部权限规划:ACL 的使用

    传统的权限仅有三种身份 (owner, group, others) 搭配三种权限 (r,w,x) 而已,并没有办法单纯的针对某一个使用者或某一个群 组来设定特定的权限需求,此时就得要使用 ACL 这 ...

  6. 利用virt-manager,xmanager, xshell启动界面来管理虚拟机

    有时候我们需要搭建一套自己的简单环境来启动一个虚拟机,验证一些问题. 1.首先我利用vmware workstation来创建centos7虚拟机,然后开启虚拟化,如下图所示. 2.其次,启动虚拟机, ...

  7. (转)全网最!详!细!tarjan算法讲解

    byhttp://www.cnblogs.com/uncle-lu/p/5876729.html 全网最详细tarjan算法讲解,我不敢说别的.反正其他tarjan算法讲解,我看了半天才看懂.我写的这 ...

  8. jQuery ui 百叶窗blind方向设置

    百叶窗特效(Blind Effect)参数direction设置 $( document ).click(function() { $( "#toggle" ).toggle( & ...

  9. vim 查找替换命令

    http://vim.wikia.com/wiki/Search_and_replace

  10. loj2032 「SDOI2016」游戏

    做了 [JSOI2008]Blue Mary开公司 以后发现这 tm 不就是个傻逼树剖+李超线段树吗,做了以后发现我才是傻逼--树剖竟然写错了--这题是我目前写过最长的代码了qwq #include ...