题意:

  给一个有n*m格子的矩形,设每格边长100,要从(1,1)走到(n,m)需要耗(n+m)*100,但是其中有一些格子是可以直接穿过的,也就是走对角线,是100*根号2长,给出k个可以穿过的格子,要求最短路径是多少?

思路:

  研究一下知道当选择了某个可穿过的格子(x,y),那么对于任意格子(>x,y)和(x,>y)都是不能再选的,因为这样会更长,也就是说同一行最多只能选一个格子穿过。一开始想到的是在一个拓扑序列中求最小路径的权之和,这个模型倒是没错,但是怎么建立一个这样的图就麻烦了。再想到用DP来穷举每个格子,复杂度O(N*M),上限有100亿,会超时,而且当k=1,n=m=100000时,复杂度还要n*m。看到别人提出LIS最长递增子序列。先按x坐标排个序,对于每个可穿的格子,判断若要穿过此格子,其前面还能穿过几个。按照O(N^2)的方法做的,代码较短。

 #include<bits/stdc++.h>
using namespace std;
const int N=;
int n, m, k, dp[N];
struct node
{
int x,y;
}a[N];
int cmp(node a, node b)
{
return a.x < b.x ? :;
}
bool cpr(node *a, node *b)//这里与LIS不同在:这是二维的
{
if(a->x < b->x && a->y < b->y )
return true;
else
return false;
}
int cal()
{
memset(dp,,sizeof(dp));
int big=;
for(int i=; i<=k; i++)
{
int j=i, tmp=;
while(--j)
if( dp[j]>tmp && cpr(&a[j],&a[i])) tmp=dp[j];
dp[i]=tmp+;
if(dp[i]>big) big=dp[i];
}
return big;
}
int main()
{
//freopen("e://input.txt","r",stdin);
while(cin>>n>>m)
{
cin>>k;
a[].x=a[].y=-;
for(int i=; i<=k; i++)
scanf("%d%d",&a[i].x,&a[i].y); //x是n那边的
sort(a+,a+k+,cmp);
int cnt=cal();
double ans=(n+m-*cnt)*+sqrt(2.0)**cnt;
printf("%d\n",(int)(ans+0.5));
}
return ;
}

AC代码

NBUT 1116 Flandre's Passageway (LIS变形)的更多相关文章

  1. 九度 1557:和谐答案 (LIS 变形)

    题目描述: 在初试即将开始的最后一段日子里,laxtc重点练习了英语阅读的第二部分,他发现了一个有意思的情况.这部分的试题最终的答案总是如下形式的:1.A;2.C;3.D;4.E;5.F.即共有六个空 ...

  2. hdu 1087(LIS变形)

    Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  3. UVA 437 巴比伦塔 【DAG上DP/LIS变形】

    [链接]:https://cn.vjudge.net/problem/UVA-437 [题意]:给你n个立方体,让你以长宽为底,一个个搭起来(下面的立方体的长和宽必须大于上面的长和宽)求能得到的最长高 ...

  4. UVa 1471 (LIS变形) Defense Lines

    题意: 给出一个序列,删掉它的一个连续子序列(该子序列可以为空),使得剩下的序列有最长的连续严格递增子序列. 分析: 这个可以看作lrj的<训练指南>P62中讲到的LIS的O(nlogn) ...

  5. hdu5773--The All-purpose Zero(LIS变形)

    题意:给一个非负整数的数列,其中0可以变成任意整数,包括负数,求最长上升子序列的长度. 题解:LIS是最简单的DP了,但是变形之后T^T真的没想到.数据范围是10^5,只能O(nlogn)的做法,所以 ...

  6. UVA1471( LIS变形)

    这是LIS的变形,题意是求一个序列中去掉某个连续的序列后,能得到的最长连续递增序列的长度. 用DP的解法是:吧这个序列用数组a来记录,再分别用两个数组f记录以i结尾的最长连续递增序列的长度,g[i]记 ...

  7. HDU-1160.FatMouse'sSpeed.(LIS变形 + 路径打印)

    本题大意:给定一定数量的数对,每个数保存着一只老鼠的质量和速度,让你求出一个最长序列,这个序列按照质量严格递增,速度严格递减排列,让你输出这个序列的最长长度,并且输出组成这个最长长度的序列的对应的老鼠 ...

  8. POJ 1836-Alignment(DP/LIS变形)

    Alignment Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 13465   Accepted: 4336 Descri ...

  9. poj 1836 LIS变形

    题目链接http://poj.org/problem?id=1836 Alignment Time Limit: 1000MS   Memory Limit: 30000K Total Submiss ...

随机推荐

  1. Windows服务卸载服务窗口仍显示的问题

    关于Windows服务通过命令卸载后, 打开服务窗口,服务还有显示,只是状态改为了禁用,运行停止.那么我们怎么解决呢, 不要心慌,打开你的任务管理器,查看服务所用的exe程序是否还在运行,若有的话,便 ...

  2. Count Subsets

    题意: 给一集合 $S = \{ 1,2, ... , n \} $,取两个S的子集 A和B,使得A不是B的子集,且B不是A的子集. 解法: 1.牛顿展开 我们采用容斥,显然有 $$ans(n) = ...

  3. SpringMVC数据绑定二(List、Set和Map类型)

    1.List类型绑定 //联系信息类 用户类的子属性 public class ContactInfo { private String phone; private String address; ...

  4. Coding 两步认证技术介绍

    什么是两步认证 在介绍两步认证之前,首先来看下目前主流的几种认证方式. 上图中的认证方式大体上可以分为三大类 1.You know : 比如密码,这种只有我们知道的 2.You are : 比如指纹, ...

  5. laravel 遍历循环

    @foreach($xxx as $k=>$y) {{$y->id}} @endforeach

  6. XML学习1 xml序言 dtd约束

  7. UML建模 | Rose | 没有跳出可选择新建RUP的对话框解决方法

  8. python3错误之TypeError: 'dict_items' object is not callable

    这种错误出现在循环结构中套循环结构,而循环时内部循环为字典,外部循环为该字典调用items方法后取到的值,内部循环调用外部循环中遍历的结果: 解决方案: 将外部循环的items()方法调用改为.key ...

  9. python 基础(四) 函数

    函数 一.什么是函数? 函数是可以实现一些特定功能的 小方法 或者是小程序 优点: 提高 了代码的后期维护 增加了代码的重复使用率 减少了代码量 提高了代码可读性 二.函数的定义 使用 def关键+函 ...

  10. linux 设置固定IP centOS6.5

    主要是要把Linux的IP固定下来,可以用另一台机器SSH连接. ping的用法: 基本语法:ping [-选项] IP地址或域名 功能描述:测试网络是否连通 常用选项:-c -c 指定发送数据包的次 ...