题目大意

有n件物品,每件物品有三个属性a[i], b[i], c[i] (a[i]<b[i])。

再给出q个询问,每个询问由非负整数m, k, s组成,问是否能够选出某些物品使得:

  1. 对于每个选的物品i,满足a[i]<=m且b[i]>m+s。
  2. 所有选出物品的c[i]的和正好是k。

第一行一个正整数\(n (n\le 1,000\)),接下来n行每行三个正整数,分别表示c[i], a[i], b[i] (\(c[i]\le 1,000, 1\le a[i]<b[i]\le 10^9\))。

下面一行一个正整数\(q (q\le 1,000,000\)),接下来\(q\)行每行三个非负整数\(m, k, s (1\le m\le 10^9, 1\le k\le 100,000, 0\le s\le 10^9)\)。

分析

离线后将a,m快排

背包一下求出每种c需要的最小的b最大是多少

O(快排+n*k)

solution

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
const int N=1007;
const int M=1000007;
const int V=100007;
const int INF=2147483647; inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
} int n,m; int ans[M]; struct node{
int a,b,c,id;
node(int aa=0,int bb=0,int cc=0,int ii=0){a=aa;b=bb;c=cc;id=ii;}
}a[N],q[M]; bool cmpa(node x,node y){return x.a<y.a;} int f[V]; void in(int w,int bb){
for(int i=V-1;i>=w;i--)
if(f[i-w]) f[i]=max(f[i],min(f[i-w],bb));
} int main(){
int i,j,x,y,z; n=rd();
for(i=1;i<=n;i++){
z=rd(),x=rd(),y=rd();
a[i]=node(x,y,z);
} m=rd();
for(i=1;i<=m;i++){
x=rd(),z=rd(),y=x+rd()+1;
q[i]=node(x,y,z,i);
} sort(a+1,a+n+1,cmpa);
sort(q+1,q+m+1,cmpa); f[0]=INF;
for(j=1,i=1;i<=m;i++){
for(;j<=n&&a[j].a<=q[i].a;j++) in(a[j].c,a[j].b);
ans[q[i].id]=q[i].b<=f[q[i].c];
} for(i=1;i<=m;i++) puts(ans[i]?"TAK":"NIE"); return 0;
}

bzoj 2794 [Poi2012]Cloakroom 离线+背包的更多相关文章

  1. BZOJ 2794 [Poi2012]Cloakroom(离线+背包)

    2794: [Poi2012]Cloakroom Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 406  Solved: 241[Submit][St ...

  2. 【BZOJ2794】[Poi2012]Cloakroom 离线+背包

    [BZOJ2794][Poi2012]Cloakroom Description 有n件物品,每件物品有三个属性a[i], b[i], c[i] (a[i]<b[i]).再给出q个询问,每个询问 ...

  3. BZOJ2794[Poi2012]Cloakroom——离线+背包

    题目描述 有n件物品,每件物品有三个属性a[i], b[i], c[i] (a[i]<b[i]).再给出q个询问,每个询问由非负整数m, k, s组成,问是否能够选出某些物品使得:1. 对于每个 ...

  4. [BZOJ2794][Poi2012]Cloakroom

    2794: [Poi2012]Cloakroom Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 167  Solved: 119[Submit][St ...

  5. bzoj 2794: Cloakroom dp

    题目: 有\(n\)件物品,每件物品有三个属性\(a_i,b_i,c_i,(a_i < b_i)\) 再给出\(q\)个询问,每个询问由非负整数\(m,k,s\)组成,问是否能够选出某些物品使得 ...

  6. Bzoj 2789: [Poi2012]Letters 树状数组,逆序对

    2789: [Poi2012]Letters Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 278  Solved: 185[Submit][Stat ...

  7. BZOJ 2794 DP

    思路: 考虑把询问离线 按照m排序 物品按照a排序 f[i]表示c[j]的和到i b的最大值 背包就好 O(nk)竟然能过-- //By SiriusRen #include <cstdio&g ...

  8. bzoj 3626: [LNOI2014]LCA 离线+树链剖分

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 426  Solved: 124[Submit][Status] ...

  9. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

随机推荐

  1. k8s1.13.0二进制部署-Dashboard和coredns(五)

    部署UI 下载yaml文件https://github.com/kubernetes/kubernetes [root@k8s-master1 ~]# git clone https://github ...

  2. k8s1.13.0二进制部署-ETCD集群(一)

    Kubernetes集群中主要存在两种类型的节点:master.minion节点. Minion节点为运行 Docker容器的节点,负责和节点上运行的 Docker 进行交互,并且提供了代理功能.Ma ...

  3. QT+event() + 事件过滤器

    其存在的意义: mywidget.h: #ifndef MYWIDGET_H #define MYWIDGET_H #include <QWidget> namespace Ui { cl ...

  4. SQLServer死锁

    死锁的四个必要条件:互斥条件(Mutual exclusion):资源不能被共享,只能由一个进程使用.请求与保持条件(Hold and wait):已经得到资源的进程可以再次申请新的资源.非剥夺条件( ...

  5. 01_8_session

    01_8_session 1. session总结 1.1服务器的一块内存(存key-value) 1.2和客户端窗口对应(子窗口)(独一无二) 1.3客户端和服务器有对应的SessionID 1.4 ...

  6. Java中 Character方法练习:字符串中英文字母个数 5435abc54abc3AHJ5 正则:matches("[a-zA-Z0-9]{1}")

    package com.swift; public class String_Letter_Number_Test { public static void main(String[] args) { ...

  7. iOS监听电话来电、挂断、拨号等

    以下,来讲解在app内如何调用打电话功能和监听电话来电.挂断.拨号等功能. 简单的UI布局: 首先,先实现拨打电话的功能,以便于后续测试: // 拨打电话 - (IBAction)dialingBut ...

  8. JAVA 修改环境变量不重启电脑生效方法

     1. 在安装JDK1.6(高版本)时(本机先安装jdk1.6再安装的jdk1.5),自动将java.exe.javaw.exe.javaws.exe三个可执行文件复制到了C:\Windows\Sys ...

  9. 将远程分支拷贝到本地,并更新代码push到原分支

    第一步:git clone +主分支 第二步:git fetch origin 分支名 第三步:git checkout -b 分支名 origin/分支名 第四步:git pull origin 分 ...

  10. 使用laravel框架的eloquent\DB模型连接多个数据库

    1.配置.env文件 DB_HOST_TRAILER=127.0.0.1DB_PORT_TRAILER=3306DB_DATABASE_TRAILER=htms_trailerDB_USERNAME_ ...