题目

Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). Your job is to calculate how many different kinds of the necklace can be produced. You should know that the necklace might not use up all the N colors, and the repetitions that are produced by rotation around the center of the circular necklace are all neglected.

You only need to output the answer module a given number P.

输入格式

The first line of the input is an integer X (X <= 3500) representing the number of test cases. The following X lines each contains two numbers N and P (1 <= N <= 1000000000, 1 <= P <= 30000), representing a test case.

输出格式

For each test case, output one line containing the answer.

输入样例

5

1 30000

2 30000

3 30000

4 30000

5 30000

输出样例

1

3

11

70

629

题解

题意:

用n种颜色染n个点的环,问有多少本质不同的染法

Polya定理##

我们设置换群为G,\(c(i)\)表示置换i的循环节个数,m为色数,L为答案

则\(L = \frac{1}{\mid G \mid} \sum_{i=1}^{s} m^{c(i)}\)

本题有n个置换,置换i循环节个数为\(gcd(n,i)\)

那么我们有:

\(ans = \frac{1}{n} \sum_{i=1}^{n} n^{gcd(n,i)}\)

\(\qquad = \frac{1}{n} \sum_{d|n} n^d \sum_{i=1}^{n}[gcd(n,i)==1]\)

\(\qquad = \sum_{d|n} n^{d-1} \sum_{i=1}^{n/d}[gcd(n/d,i)==1]\)

\(\qquad = \sum_{d|n} n^{d-1} \phi(n/d)\)

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int P,prime[maxn],primei;
bool isn[maxn];
void init(){
for (int i = 2; i < maxn; i++){
if (!isn[i]) prime[++primei] = i;
for (int j = 1; j <= primei && i * prime[j] < maxn; j++){
isn[i * prime[j]] = true;
if (i % prime[j] == 0) break;
}
}
}
int qpow(int a,int b){
int ans = 1;
for (; b; b >>= 1,a = (LL)a * a % P)
if (b & 1) ans = (LL)ans * a % P;
return ans;
}
int phi(int n){
int ans = n;
for (int i = 1; prime[i] * prime[i] <= n; i++){
int p = prime[i];
if (n % p == 0){
ans = ans - ans / p;
while (n % p == 0) n /= p;
}
}
if (n > 1) ans = ans - ans / n;
return ans % P;
}
int cal(int n,int d){
return qpow(n,d - 1) * phi(n / d) % P;
}
int main(){
init();
int T = read(),n,ans;
while (T--){
n = read(); P = read(); ans = 0;
for (int i = 1; i * i <= n; i++){
if (n % i == 0){
ans = (ans + cal(n,i)) % P;
if (i * i != n) ans = (ans + cal(n,n / i)) % P;
}
}
printf("%d\n",ans);
}
return 0;
}

POJ2154 Color 【Polya定理 + 欧拉函数】的更多相关文章

  1. 【poj2154】Color Polya定理+欧拉函数

    题目描述 $T$ 组询问,用 $n$ 种颜色去染 $n$ 个点的环,旋转后相同视为同构.求不同构的环的个数模 $p$ 的结果. $T\le 3500,n\le 10^9,p\le 30000$ . 题 ...

  2. POJ2154 Color【 polya定理+欧拉函数优化】(三个例题)

    由于这是第一天去实现polya题,所以由易到难,先来个铺垫题(假设读者是看过课件的,不然可能会对有些“显然”的地方会看不懂): 一:POJ1286 Necklace of Beads :有三种颜色,问 ...

  3. poj2154Color polya定理+欧拉函数优化

    没想到贱贱的数据居然是错的..搞得我调了一中午+晚上一小时(哦不d飞LJH掉RP毕竟他是BUFF)结果重判就对了五次.. 回归正题,这题傻子都看得出是polya定理(如果你不是傻子就看这里),还没有翻 ...

  4. poj2154(polya定理+欧拉函数)

    题目链接:http://poj.org/problem?id=2154 题意:n 种颜色的珠子构成一个长为 n 的环,每种颜色珠子个数无限,也不一定要用上所有颜色,旋转可以得到状态只算一种,问有多少种 ...

  5. poj 2154 Color【polya定理+欧拉函数】

    根据polya定理,答案应该是 \[ \frac{1}{n}\sum_{i=1}^{n}n^{gcd(i,n)} \] 但是这个显然不能直接求,因为n是1e9级别的,所以推一波式子: \[ \frac ...

  6. 【POJ2154】Color Pólya定理+欧拉函数

    [POJ2154]Color 题意:求用$n$种颜色染$n$个珠子的项链的方案数.在旋转后相同的方案算作一种.答案对$P$取模. 询问次数$\le 3500$,$n\le 10^9,P\le 3000 ...

  7. Luogu4980 【模板】Polya定理(Polya定理+欧拉函数)

    对于置换0→i,1→i+1……,其中包含0的循环的元素个数显然是n/gcd(i,n),由对称性,循环节个数即为gcd(i,n). 那么要求的即为Σngcd(i,n)/n(i=0~n-1,也即1~n). ...

  8. poj 2154 Color(polya计数 + 欧拉函数优化)

    http://poj.org/problem?id=2154 大致题意:由n个珠子,n种颜色,组成一个项链.要求不同的项链数目.旋转后一样的属于同一种.结果模p. n个珠子应该有n种旋转置换.每种置换 ...

  9. poj2409 & 2154 polya计数+欧拉函数优化

    这两个题都是项链珠子的染色问题 也是polya定理的最基本和最经典的应用之一 题目大意: 用m种颜色染n个珠子构成的项链,问最终形成的等价类有多少种 项链是一个环.通过旋转或者镜像对称都可以得到置换 ...

随机推荐

  1. Java基础面试题:String 和StringBuffer的区别

    package com.swift; import java.util.Date; public class Getclass_Test extends Date { public static vo ...

  2. Java程序调用自动关机指令 1分钟内自动关机

    package com.swift;//可以不要这句 import java.io.IOException; public class Shutdown100 { public static void ...

  3. for in 和 for of的区别详解

    for in 和 for of 相对于大家肯定都不陌生,都是用来遍历属性的没错.那么先看下面的一个例子: 例1 const obj = { a: 1, b: 2, c: 3 } for (let i ...

  4. HDU-3366-Count the string(KMP,DP)

    Count the string Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...

  5. 2018.10.30 NOIp模拟赛 T1 改造二叉树

    [题目描述] 小Y在学树论时看到了有关二叉树的介绍:在计算机科学中,二叉树是每个结点最多有两个子结点的有序树.通常子结点被称作“左孩子”和“右孩子”.二叉树被用作二叉搜索树和二叉堆.随后他又和他人讨论 ...

  6. Mysql5.7自定义函数递归报错1424 Recursive stored functions and triggers are not allowed

    示例: DELIMITER $$CREATE FUNCTION test(countnum INT)RETURNS INT DETERMINISTICBEGINDECLARE tempnum INT ...

  7. Mysql占用内存过高的优化过程

    一.环境说明: 操作系统:CentOS 6.5 x86_64 数据库:Mysql 5.6.22 服务器:阿里云VPS,32G Mem,0 swap 二.问题情况: 1.某日发现公司线上系统的Mysql ...

  8. js动态刷新时间

    <script type="text/javascript"> //取得系统当前时间 function getTime(){ var myDate = new Date ...

  9. Freemaker基于word模板动态导出压缩文件汇总整理

    Freemaker基于word模板动态导出压缩文件汇总整理 Freemaker基于word模板动态导出单个文件思路和代码详情见连接: https://www.cnblogs.com/lsy-blogs ...

  10. [BZOJ1503]郁闷的出纳员(Splay)

    Description OIER公司是一家大型专业化软件公司,有着数以万计的员工.作为一名出纳员,我的任务之一便是统计每位员工的工资.这本来是一份不错的工作,但是令人郁闷的是,我们的老板反复无常,经常 ...