有 k 条特殊边的生成树

我们发现有一些边是必须的,如果把所有的水泥路都加入并查集,再枚举鹅卵石路,如果这条路能再次加入并查集,说明这条路是必须的

水泥路同样

这样就把必需边求出来了,剩下就可以随意加边了

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
using namespace std;
const int MAXN = 100005;
int init() {
int rv = 0, fh = 1;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') fh = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
rv = (rv<<1) + (rv<<3) + c - '0';
c = getchar();
}
return fh * rv;
}
int n, m, nume, head[MAXN], fa[MAXN], k, cnt, ans[MAXN], ind;
struct edge{
int to, nxt, opt;
}e[MAXN << 1];
void adde(int from, int to, int opt) {
e[++nume].to = to;
e[nume].nxt = head[from];
head[from] = nume;
e[nume].opt = opt;
}
int find(int x) {
if(x != fa[x]) return fa[x] = find(fa[x]);
return fa[x];
}
void merge(int x, int y) {
int r1 = find(x), r2 = find(y);
if(r1 != r2) {
fa[r1] = r2;
}
}
void input() {
for(int i = 1; i <= n; i++) fa[i] = i;
}
bool chk() {
for(int i = 2; i <= n; i++) if(find(i) != find(1)) return 0;
return 1;
}
int main() {
n = init(); m = init(); k = init();
input();
for(int i = 1; i <= m; i++) {
int u = init(), v = init(), opt = init();
adde(u, v, opt); adde(v, u, opt);
if(opt == 1) merge(u, v);
}
for(int i = 1; i <= m * 2; i += 2) {
if(e[i].opt == 0) {
int r1 = find(e[i].to), r2 = find(e[((i - 1) ^ 1) + 1].to);
if(r1 != r2) {
fa[r1] = r2;
ans[++cnt] = i;
ind++;
}
}
}
if(cnt > k || !chk()) {
printf("no solution\n");
return 0;
}
input();
for(int i = 1; i <= nume; i += 2) {
if(e[i].opt == 0) merge(e[i].to, e[((i - 1) ^ 1) + 1].to);
}
for(int i = 1; i <= m * 2; i += 2) {
if(e[i].opt == 1) {
int r1 = find(e[i].to), r2 = find(e[((i - 1) ^ 1) + 1].to);
if(r1 != r2) {
fa[r1] = r2;
ans[++cnt] = i;
}
}
}
if(!chk()) {
printf("no solution\n");
return 0;
}
input();
for(int i = 1; i <= cnt; i++) {
int t = ans[i];
merge(e[t].to, e[((t - 1) ^ 1) + 1].to);
}
for(int i = 1; i <= nume; i += 2) {
if(ind == k) break;
if(e[i].opt == 0) {
int r1 = find(e[i].to), r2 = find(e[((i - 1) ^ 1) + 1].to);
if(r1 != r2) {
fa[r1] = r2;
ans[++cnt] = i;
ind++;
}
}
}
if(ind != k) {
printf("no solution\n");
return 0;
}
for(int i = 1; i <= nume; i += 2) {
if(e[i].opt == 1) {
int r1 = find(e[i].to), r2 = find(e[((i - 1) ^ 1) + 1].to);
if(r1 != r2) {
fa[r1] = r2;
ans[++cnt] = i;
}
}
}
sort(ans + 1, ans + cnt + 1);
for(int i = 1 ; i <= cnt; i++) {
int t = ans[i];
printf("%d %d %d\n", e[((t - 1) ^ 1) + 1].to, e[t].to, e[t].opt);
}
return 0;
}

洛谷 [P3623] 免费道路的更多相关文章

  1. 洛谷 P5019 铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...

  2. [NOIP2014] 提高组 洛谷P2296 寻找道路

    题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

  3. NOIP2014 day2 T2 洛谷P2296 寻找道路

    题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

  4. 洛谷 P1272 重建道路 解题报告

    P1272 重建道路 题目描述 一场可怕的地震后,人们用\(N\)个牲口棚\((1≤N≤150\),编号\(1..N\))重建了农夫\(John\)的牧场.由于人们没有时间建设多余的道路,所以现在从一 ...

  5. 洛谷 P2505 [HAOI2012]道路 解题报告

    P2505 [HAOI2012]道路 题目描述 C国有n座城市,城市之间通过m条单向道路连接.一条路径被称为最短路,当且仅当不存在从它的起点到终点的另外一条路径总长度比它小.两条最短路不同,当且仅当它 ...

  6. 洛谷P3639 [APIO2013] 道路费用 [生成树的特殊算法]

    题目传送门 道路费用 格式难调,题面就不放了. 分析: 这是一道要细(yan)心(jing)的生成树的好(gui)题. 首先我们看到$k$的范围非常小,那么我们就可以直接$2^k$枚举每一条加边是否选 ...

  7. 洛谷P2296 寻找道路 [拓扑排序,最短路]

    题目传送门 寻找道路 题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点 ...

  8. 洛谷——P1907 设计道路

    P1907 设计道路 题目描述 Caesar远征高卢回来后,对你大加赞赏,他亲自来到Genoa视察. Genoa在你的建设下变得无比繁荣,由于财政收入的增加,你为城市修建了交通系统.古罗马的交通系统由 ...

  9. 洛谷P2052 [NOI2011]道路修建(树形DP)

    题目描述 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家 之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿 意修建恰好 n – 1 条双向道路. 每条道 ...

随机推荐

  1. iOS 多线程(NSThread、GCD、NSOperation)

    ios中得多线程技术主要使用3种:NSThread.NSOperation和GCD 一.NSThread: 最轻量级方法,但是不安全需要手动加锁,需要自己管理生命周期 NSThread的使用方法有2种 ...

  2. cocoapods 类库管理利器

    作为iOS开发者,第三方类库的使用是最经常的,但鉴于第三方类库的不断更新以及其可能需要依存其他类,如果要使用最新版那么我们需要重新下载再添加到项目中,无疑带来一些繁琐的麻烦,那么现在这里就有一款能解决 ...

  3. linux中管道(pipe)一谈

    /*********************************************** 管道(pipe)是Linux上进程间通信的一种方式,其是半双工(数据流只能在一个方向上流动(还需要经过 ...

  4. Ansible学习 安装

    对于运维人员来说,自动化工具是日常工作中比不可少的.Ansible是一个很好的自动化工具. Ansible默认使用SSH协议管理机器,在管理主机上安装Ansible,管理主机和被管理主机只要安装了py ...

  5. .NET 执行命令行乱码

    Process可以运行命令行内容儿不用担心会弹出命令行窗口 需要读取命令行结果时,如果不注意内容编码,就会出现读取的结果出现乱码 读取StandardOutput结果时需要指定StandardOutp ...

  6. 【PHP】判断变量是否为控

    1. isset功能:判断变量是否被初始化 说明:它并不会判断变量是否为空,并且可以用来判断数组中元素是否被定义过注意:当使用isset来判断数组元素是否被初始化过时,它的效率比array_key_e ...

  7. PHP如何严格控制session过期时间

    第一种回答 那么, 最常见的一种回答是: 设置Session的过期时间, 也就是session.gc_maxlifetime, 这种回答是不正确的, 原因如下: 1. 首先, 这个PHP是用一定的概率 ...

  8. Codeforces Round #435 (Div. 2) B (二分图) C(构造)

    B. Mahmoud and Ehab and the bipartiteness time limit per test 2 seconds memory limit per test 256 me ...

  9. MySQL基础9-主键约束、外键约束、等值连接查询、一对一和多对多关系

    1.主键约束和外键约束 外键约束 * 外键必须是另一表的主键的值(外键要引用主键!) * 外键可以重复 * 外键可以为空 * 一张表中可以有多个外键! 概念模型在数据库中成为表 数据库表中的多对一关系 ...

  10. 非常全的API接口查询

    http://www.apix.cn/services/category/3 https://www.showapi.com/ https://www.juhe.cn/docs http://deve ...