【bzoj4589】Hard Nim FWT
题目描述
输入
输出
每组数据输出一个数,表示答案
样例输入
3 7
4 13
样例输出
6
120
题解
FWT裸题
Nim游戏后手必胜条件:每堆石子数异或和为0。
那么设f[i]表示异或和为i的方案数,显然这是一个异或规则下的卷积(卷积求幂)
所以使用FWT,每个数转化后求对应的幂次,再求逆FWT即为答案。
#include <cstdio>
#include <cstring>
#define N 70000
typedef long long ll;
const ll mod = 1000000007 , inv = 500000004;
int np[N] , prime[N] , tot;
ll a[N];
ll pow(ll x , int y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
void fwt(int len)
{
int i , j , k;
ll t;
for(i = 2 ; i <= len ; i <<= 1)
for(j = 0 ; j < len ; j += i)
for(k = j ; k < j + (i >> 1) ; k ++ )
t = a[k] , a[k] = (a[k] + a[k + (i >> 1)]) % mod , a[k + (i >> 1)] = (t - a[k + (i >> 1)] + mod) % mod;
}
void ufwt(int len)
{
int i , j , k;
ll t;
for(i = len ; i >= 2 ; i >>= 1)
for(j = 0 ; j < len ; j += i)
for(k = j ; k < j + (i >> 1) ; k ++ )
t = a[k] , a[k] = (a[k] + a[k + (i >> 1)]) * inv % mod , a[k + (i >> 1)] = (t - a[k + (i >> 1)] + mod) * inv % mod;
}
int main()
{
int n , m , i , j , len;
for(i = 2 ; i <= 50000 ; i ++ )
{
if(!np[i]) prime[++tot] = i;
for(j = 1 ; j <= tot && i * prime[j] <= 50000 ; j ++ )
{
np[i * prime[j]] = 1;
if(i % prime[j] == 0) break;
}
}
while(~scanf("%d%d" , &n , &m))
{
memset(a , 0 , sizeof(a));
for(i = 1 ; i <= tot && prime[i] <= m ; i ++ ) a[prime[i]] = 1;
for(len = 1 ; len <= m ; len <<= 1);
fwt(len);
for(i = 0 ; i < len ; i ++ ) a[i] = pow(a[i] , n);
ufwt(len);
printf("%lld\n" , a[0]);
}
return 0;
}
【bzoj4589】Hard Nim FWT的更多相关文章
- 【bzoj4589】Hard Nim FWT+快速幂
题目大意:给你$n$个不大于$m$的质数,求有多少种方案,使得这$n$个数的异或和为$0$.其中,$n≤10^9,m≤10^5$. 考虑正常地dp,我们用$f[i][j]$表示前$i$个数的异或和为$ ...
- 【BZOJ4589】Hard Nim(FWT)
题解: 由博弈论可以知道题目等价于求这$n$个数$\^$为0 快速幂$+fwt$ 这样是$nlog^2$的 并不能过 而且得注意$m$的数组$\^$一下会生成$2m$ #include <bit ...
- 【CF662A】Gambling Nim 线性基
[CF662A]Gambling Nim 题意:n长卡牌,第i张卡牌正面的数字是$a_i$,反面的数字是$b_i$,每张卡牌等概率为正面朝上或反面朝上.现在Alice和Bob要用每张卡牌朝上的数字玩N ...
- 【BZOJ3105】新Nim游戏(线性基)
[BZOJ3105]新Nim游戏(线性基) 题面 BZOJ Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以 ...
- 【CSU1911】Card Game(FWT)
[CSU1911]Card Game(FWT) 题面 vjudge 题目大意: 给定两个含有\(n\)个数的数组 每次询问一个数\(x\),回答在每个数组中各选一个数,或起来之后的结果恰好为\(x\) ...
- 【题解】毒蛇越狱(FWT+容斥)
[题解]毒蛇越狱(FWT+容斥) 问了一下大家咋做也没听懂,按兵不动没去看题解,虽然已经晓得复杂度了....最后感觉也不难 用FWT_OR和FWT_AND做一半分别求出超集和和子集和,然后 枚举问号是 ...
- 【CF772D】Varying Kibibits FWT
[CF772D]Varying Kibibits 题意:定义函数f(a,b,c...)表示将a,b,c..的10进制下的每一位拆开,分别取最小值组成的数.如f(123,321)=121,f(530, ...
- 【CF850E】Random Elections FWT
[CF850E]Random Elections 题意:有n位选民和3位预选者A,B,C,每个选民的投票方案可能是ABC,ACB,BAC...,即一个A,B,C的排列.现在进行三次比较,A-B,B-C ...
- 【SRM】518 Nim
题意 \(K(1 \le K \le 10^9)\)堆石子,每堆石子个数不超过\(L(2 \le 50000)\),问Nim游戏中先手必败局面的数量,答案对\(10^9+7\)取模. 分析 容易得到\ ...
随机推荐
- bzoj4622 [NOI 2003] 智破连环阵
Description B国在耗资百亿元之后终于研究出了新式武器——连环阵(Zenith Protected Linked Hybrid Zone).传说中,连环阵是一种永不停滞的自发性智能武器.但经 ...
- Python判断一个数是否为小数
一.判断一个数是否为小数 1.有且仅有一个小数点 2.小数点的左边可能为正数或负数 3.小数点的右边为正数 二.实现代码 def is_float(str): if str.count('.') == ...
- 前端小记6——项目中常用的ES6方法
现在很多功能用es5的方法也能实现功能,但es6提供的方法显得更为高效.记录下目前常用的几个方法. 1.字符包含 通过str.includes('a')来判断, 若str中包含a则结果为true,否则 ...
- https及其背后的加密原理阅读总结
https是以安全为目标的http通道,简单讲是http的安全版.当我们往服务器发送比较隐私的数据(比如说你的银行卡,身份证)时,如果使用http进行通信.那么安全性将得不到保障. 首先数据在传输的过 ...
- js控制时间显示格式
Date.prototype.Format = function (fmt) { //author: meizz var o = { "M+": this.g ...
- 六、Shell echo命令
Shell echo命令 Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出.命令格式: echo string 您可以使用echo实现更复杂的输出格式控制. 1. ...
- nginx修改nginx.conf配置可以https访问
修改nginx.conf,参照如下更改配置server { listen 443; server_name abc.com; // 访问域名 ssl on; root /var/www/bjubi.c ...
- JsRender (js模板引擎)
最近学习了一下Jsrender模板渲染工具,非常不错,功能比较强大,官网说他是“简单直观 功能强大 可扩展的 快如闪电”确实如此.总结一下!! jsRender 三个最重要的概念:模板.容器和数据. ...
- Scrapy用pipelines把字典保存为csv格式
import csv class MyProjectPipeline(object): # 保存为csv格式 def __init__(self): # 打开文件,指定方式为写,利用第3个参数把csv ...
- [Poj2761]Feed the dogs(主席树)
Desciption 题意:求区间第K小(N<=100000) Solution 主席树模板题 Code #include <cstdio> #include <algorit ...