SVM用于线性回归
SVM用于线性回归
方法分析
在样本数据集()中,不是简单的离散值,而是连续值。如在线性回归中,预测房价。与线性回归类型,目标函数是正则平方误差函数:
在SVM回归算法中,目的是训练出超平面,采用作为预测值。为了获得稀疏解,即计算超平面参数w,b不依靠所有样本数据,而是部分数据(如在SVM分类算法中,支持向量的定义),采用误差函数
误差函数定义为,如果预测值与真实值的差值小于阈值将不对此样本做惩罚,若超出阈值,惩罚量为。
下图为误差函数与平方误差函数的图形
目标函数
观察上述的误差函数的形式,可以看到,实际形成了一个类似管道的样子,在管道中样本点,不做惩罚,所以被称为,如下图阴影红色部分
用替代平方误差项,因此可以定义最小化误差函数作为优化目标:
由于上述目标函数含有绝对值项不可微。我们可以转化成一个约束优化问题,常用的方法是为每一个样本数据定义两个松弛变量,表示度量与的距离。
如上图所示:
当样本点真实值位于管道上方时,写成表达式:时,
当样本点真实值位于管道下方时,写成表达式:时,
因此使得每个样本点位于管道内部的条件为:
当位于管道上方时,,有
当位于管道下方时,,有
误差函数可以写成为一个凸二次优化问题:
约束条件为:
写成拉格朗日函数:
对偶问题
上述问题为极小极大问题
与SVM分类分析方法一样,改写成对偶问题
首先求偏导数
超平面计算
Support Vector Machine - Regression (SVR)
Support Vector Machine can also be used as a regression method, maintaining all the main features that characterize the algorithm (maximal margin). The Support Vector Regression (SVR) uses the same principles as the SVM for classification, with only a few minor differences. First of all, because output is a real number it becomes very difficult to predict the information at hand, which has infinite possibilities. In the case of regression, a margin of tolerance (epsilon) is set in approximation to the SVM which would have already requested from the problem. But besides this fact, there is also a more complicated reason, the algorithm is more complicated therefore to be taken in consideration. However, the main idea is always the same: to minimize error, individualizing the hyperplane which maximizes the margin, keeping in mind that part of the error is tolerated.
Linear SVR
Non-linear SVR
The kernel functions transform the data into a higher dimensional feature space to make it possible to perfom the linear separation
Kernel functions
SVM用于线性回归的更多相关文章
- 8.SVM用于多分类
从前面SVM学习中可以看出来,SVM是一种典型的两类分类器.而现实中要解决的问题,往往是多类的问题.如何由两类分类器得到多类分类器,就是一个值得研究的问题. 以文本分类为例,现成的方法有很多,其中一劳 ...
- SVM入门(十)将SVM用于多类分类
源地址:http://www.blogjava.net/zhenandaci/archive/2009/03/26/262113.html 从 SVM的那几张图可以看出来,SVM是一种典型的两类分类器 ...
- 将SVM用于多类分类
转自:http://www.lining0806.com/%E5%B0%86svm%E7%94%A8%E4%BA%8E%E5%A4%9A%E7%B1%BB%E5%88%86%E7%B1%BB/ SVM ...
- svm和svr区别--摘自其它博客
学习笔记:SVM柔性边界的补充和SVR(支持向量回归) 作者 小刺猬yyx 关注 2016.08.06 10:31* 字数 1608 阅读 421评论 0喜欢 2 上一个笔记对于SVM不能完美分类的情 ...
- 【Python机器学习实战】感知机和支持向量机学习笔记(三)之SVM的实现
前面已经对感知机和SVM进行了简要的概述,本节是SVM算法的实现过程用于辅助理解SVM算法的具体内容,然后借助sklearn对SVM工具包进行实现. SVM算法的核心是SMO算法的实现,首先对SMO算 ...
- 【转】 SVM算法入门
课程文本分类project SVM算法入门 转自:http://www.blogjava.net/zhenandaci/category/31868.html (一)SVM的简介 支持向量机(Supp ...
- SVM算法入门
转自:http://blog.csdn.net/yangliuy/article/details/7316496SVM入门(一)至(三)Refresh 按:之前的文章重新汇编一下,修改了一些错误和不当 ...
- 机器学习之单变量线性回归(Linear Regression with One Variable)
1. 模型表达(Model Representation) 我们的第一个学习算法是线性回归算法,让我们通过一个例子来开始.这个例子用来预测住房价格,我们使用一个数据集,该数据集包含俄勒冈州波特兰市的住 ...
- 数学之路(3)-机器学习(3)-机器学习算法-SVM[5]
svm小结 1.超平面 两种颜色的点分别代表两个类别,红颜色的线表示一个可行的超平面.在进行分类的时候,我们将数据点 x 代入 f(x) 中,如果得到的结果小于 0 ,则赋予其类别 -1 ,如果 ...
随机推荐
- Hive的HQL(2)
Hive基础(1) Hive的HQL(2) 1. HQL的数据定义,HQL是一种SQL方言,支持绝大部分SQL-92标准.但是和SQL的差异为:不支持行级别的操作,不支持事务等.HQL的语法接近于My ...
- I Have a Dream(我有一个梦想)
I Have a Dream by Martin Luther King, Jr. I am happy to join with you today in what will go down in ...
- PHP判断两个矩形是否相交
<?php $s = is_rect_intersect(1,2,1,2,4,5,0,3); var_dump($s); /* 如果两个矩形相交,那么矩形A B的中心点和矩形的边长是有一定关系的 ...
- Got error 28 from storage engine的错误处理
早上例行检查数据库,发现Got error 28 from storage engine这个错误,天那,我的数据.心里哇凉....备份的时间还是很久以前.最近更新了不少,麻烦大了. 好在找到了解决方法 ...
- python基础教程总结15——4 新闻聚合
NNTP:网络新闻传输协议,Network News Transfer Protocol 目标: 从多种不同的来源收集新闻: 用户可以轻松添加新的新闻来源(甚至是新类型的新闻来源: 程序可以将编译好的 ...
- Windows UEFI 安装策略的一个细节
在计算机已连接任何带Windows Boot Manager的硬盘的时候,系统自己不会创建EFI分区,而是用之前的
- Java变量、Java对象初始化顺序
局部变量与成员变量: 局部变量分为: 行参:在方法签名中定义的局部变量,随方法的结束而凋亡. 方法内的局部变量:必须在方法内对其显示初始化,从初始化后开始生效,随方法的结束而凋亡. 代码块内的局部变量 ...
- gearmand安装
下载 https://github.com/gearman/gearmand/releases 解压,进入目录 sudo ./configure make sudo make install 问题1: ...
- DROP OPERATOR - 删除一个操作符
SYNOPSIS DROP OPERATOR name ( lefttype | NONE , righttype | NONE ) [ CASCADE | RESTRICT ] DESCRIPTIO ...
- FTP服务器建立windows与Linux的文件共享与读写操作
centos7搭建vsftpd 2018-11-15 我们有时想要windows与Linux互传文件,就要用到vsftpd了.它仅仅在windows上面操作,就可以实现与Linux的通信,详情如下: ...