缓存淘汰算法之LRU实现
Java中最简单的LRU算法实现,就是利用 LinkedHashMap,覆写其中的removeEldestEntry(Map.Entry)方法即可
import java.util.ArrayList;
import java.util.Collection;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock; /**
* LinkedHashMap实现简单的缓存, 必须实现removeEldestEntry方法,具体参见JDK文档
* @author
* 2017年9月1日
*/
public class LRULinkedHashMap<K, V> extends LinkedHashMap<K, V> { private final int maxCapacity;
private static final float DEFAULT_LOAD_FACTOR = 0.75f;
private final Lock lock = new ReentrantLock(); public LRULinkedHashMap(int maxCapacity) {
super(maxCapacity, DEFAULT_LOAD_FACTOR, true);
this.maxCapacity = maxCapacity;
} @Override
protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) {
return size() > maxCapacity;
}
@Override
public boolean containsKey(Object key) {
try {
lock.lock();
return super.containsKey(key);
} finally {
lock.unlock();
}
} @Override
public V get(Object key) {
try {
lock.lock();
return super.get(key);
} finally {
lock.unlock();
}
} @Override
public V put(K key, V value) {
try {
lock.lock();
return super.put(key, value);
} finally {
lock.unlock();
}
} public int size() {
try {
lock.lock();
return super.size();
} finally {
lock.unlock();
}
} public void clear() {
try {
lock.lock();
super.clear();
} finally {
lock.unlock();
}
} public Collection<Map.Entry<K, V>> getAll() {
try {
lock.lock();
return new ArrayList<Map.Entry<K, V>>(super.entrySet());
} finally {
lock.unlock();
}
}
}
基于双链表的LRU实现
传统意义的LRU算法是为每一个Cache对象设置一个计数器,每次Cache命中则给计数器+1,而Cache用完,需要淘汰旧内容,放置新内容时,就查看所有的计数器,并将最少使用的内容替换掉。
它的弊端很明显,如果Cache的数量少,问题不会很大, 但是如果Cache的空间过大,达到10W或者100W以上,一旦需要淘汰,则需要遍历所有计算器,其性能与资源消耗是巨大的。效率也就非常的慢了。
它的原理: 将Cache的所有位置都用双连表连接起来,当一个位置被命中之后,就将通过调整链表的指向,将该位置调整到链表头的位置,新加入的Cache直接加到链表头中。
这样,在多次进行Cache操作后,最近被命中的,就会被向链表头方向移动,而没有命中的,而想链表后面移动,链表尾则表示最近最少使用的Cache。
当需要替换内容时候,链表的最后位置就是最少被命中的位置,我们只需要淘汰链表最后的部分即可。
import java.util.Hashtable; public class LRUCache { class CacheNode {
CacheNode prev;//前一节点
CacheNode next;//后一节点
Object value;//值
Object key;//键
CacheNode() {
}
} private int cacheSize;
private Hashtable nodes;//缓存容器
private int currentSize;
private CacheNode first;//链表头
private CacheNode last;//链表尾 public LRUCache(int i) {
currentSize = 0;
cacheSize = i;
nodes = new Hashtable(i);//缓存容器
} /**
* 获取缓存中对象
* @param key
* @return
*/
public Object get(Object key) {
CacheNode node = (CacheNode) nodes.get(key);
if (node != null) {
moveToHead(node);
return node.value;
} else {
return null;
}
} /**
* 添加缓存
* @param key
* @param value
*/
public void put(Object key, Object value) {
CacheNode node = (CacheNode) nodes.get(key); if (node == null) {
//缓存容器是否已经超过大小.
if (currentSize >= cacheSize) {
if (last != null)//将最少使用的删除
nodes.remove(last.key);
removeLast();
} else {
currentSize++;
} node = new CacheNode();
}
node.value = value;
node.key = key;
//将最新使用的节点放到链表头,表示最新使用的.
moveToHead(node);
nodes.put(key, node);
}
/**
* 将缓存删除
* @param key
* @return
*/
public Object remove(Object key) {
CacheNode node = (CacheNode) nodes.get(key);
if (node != null) {
if (node.prev != null) {
node.prev.next = node.next;
}
if (node.next != null) {
node.next.prev = node.prev;
}
if (last == node)
last = node.prev;
if (first == node)
first = node.next;
}
return node;
}
public void clear() {
first = null;
last = null;
}
/**
* 删除链表尾部节点
* 表示 删除最少使用的缓存对象
*/
private void removeLast() {
//链表尾不为空,则将链表尾指向null. 删除连表尾(删除最少使用的缓存对象)
if (last != null) {
if (last.prev != null)
last.prev.next = null;
else
first = null;
last = last.prev;
}
} /**
* 移动到链表头,表示这个节点是最新使用过的
* @param node
*/
private void moveToHead(CacheNode node) {
if (node == first)
return;
if (node.prev != null)
node.prev.next = node.next;
if (node.next != null)
node.next.prev = node.prev;
if (last == node)
last = node.prev;
if (first != null) {
node.next = first;
first.prev = node;
}
first = node;
node.prev = null;
if (last == null)
last = first;
} }
缓存淘汰算法之LRU实现的更多相关文章
- 两种缓存淘汰算法LFU&LRU
LRU全称是Least Recently Used,即最近最久未使用的意思. LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小.也就是说,当限定的空间已 ...
- 缓存淘汰算法之LRU
1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”. ...
- 两种常见的缓存淘汰算法LFU&LRU
1. LFU 1.1. 原理 LFU(Least Frequently Used)算法根据数据的历史访问频率来淘汰数据,其核心思想是“如果数据过去被访问多次,那么将来被访问的频率也更高”. 1.2. ...
- 04 | 链表(上):如何实现LRU缓存淘汰算法?
今天我们来聊聊“链表(Linked list)”这个数据结构.学习链表有什么用呢?为了回答这个问题,我们先来讨论一个经典的链表应用场景,那就是+LRU+缓存淘汰算法. 缓存是一种提高数据读取性能的技术 ...
- 数据结构与算法之美 06 | 链表(上)-如何实现LRU缓存淘汰算法
常见的缓存淘汰策略: 先进先出 FIFO 最少使用LFU(Least Frequently Used) 最近最少使用 LRU(Least Recently Used) 链表定义: 链表也是线性表的一种 ...
- 链表:如何实现LRU缓存淘汰算法?
缓存淘汰策略: FIFO:先入先出策略 LFU:最少使用策略 LRU:最近最少使用策略 链表的数据结构: 可以看到,数组需要连续的内存空间,当内存空间充足但不连续时,也会申请失败触发GC,链表则可 ...
- 聊聊缓存淘汰算法-LRU 实现原理
前言 我们常用缓存提升数据查询速度,由于缓存容量有限,当缓存容量到达上限,就需要删除部分数据挪出空间,这样新数据才可以添加进来.缓存数据不能随机删除,一般情况下我们需要根据某种算法删除缓存数据.常用淘 ...
- 《数据结构与算法之美》 <04>链表(上):如何实现LRU缓存淘汰算法?
今天我们来聊聊“链表(Linked list)”这个数据结构.学习链表有什么用呢?为了回答这个问题,我们先来讨论一个经典的链表应用场景,那就是 LRU 缓存淘汰算法. 缓存是一种提高数据读取性能的技术 ...
- 昨天面试被问到的 缓存淘汰算法FIFO、LRU、LFU及Java实现
缓存淘汰算法 在高并发.高性能的质量要求不断提高时,我们首先会想到的就是利用缓存予以应对. 第一次请求时把计算好的结果存放在缓存中,下次遇到同样的请求时,把之前保存在缓存中的数据直接拿来使用. 但是, ...
随机推荐
- MVC与Holla聊天工具
MVC 是一种设计模式, 它将应用划分为 3 个部分 : 数据( 模型). 展现层( 视图) 和用 户交互层( 控制器). 换句话说, 一个事件的发生是这样的过程 : 1. 用户和应用产生交互. 2. ...
- 快速搭建基于Azure Paas的高可用WordPress网站
产品详情 产品介绍 WordPress是一种使用非常广泛的CMS系统.本应用是根据Azure Resource Manager模板创建的.通过该ARM模板可以快速建立web应用和MySQL数据库,部署 ...
- HDU 1007 Quoit Design最近点对( 分治法)
题意: 给出平面上的n个点,问任意点对之间的最短距离是多少? 思路: 先将所有点按照x坐标排序,用二分法将n个点一分为二个部分,递归下去直到剩下两或一个点.对于一个部分,左右部分的答案分别都知道,那么 ...
- 洛谷 P2383 狗哥玩木棒
题目背景 狗哥又趁着语文课干些无聊的事了... 题目描述 现给出一些木棒长度,那么狗哥能否用给出的木棒(木棒全用完)组成一个正方形呢? 输入输出格式 输入格式: 输入文件中的第一行是一个整数n表示测试 ...
- 在广州学习PHP零基础可以学习吗?
PHP现今作为互联网运用很广泛的编程语言,市场需求量也越来越高,而PHP开发工程师的薪资也是一路水涨船高,更多的人看到了PHP的发展前景,纷纷都想投入到PHP的开发大军中来,那么对于很多转行或者零基础 ...
- BZOJ 4777: [Usaco2017 Open]Switch Grass
4777: [Usaco2017 Open]Switch Grass Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 46 Solved: 10[Su ...
- EditPlus 3.7激活码注册码
EditPlus3.7激活教程以及EditPlus3.7激活码使用方法 EditPlus是一款功能齐全的文字编辑器,搭配其他的插件还可以实现很多的功能,还可以编辑和编译Java,调试程序等,主要用来打 ...
- 通过存储过程批量生成spool语句
过存储过程批量生成spool语句 CREATE OR REPLACE PROCEDURE pro_yx_full_txt IS export_handle UTL_FILE.file_type; v_ ...
- oracle 快速复制一张表,并在此创建索引,日志及并行度
复制表结构及其数据 create table table_name_new as select * from table_name_old 只复制表结构 create table table_name ...
- module.exports exports 和export export default
首先可以知道的是这是两组不同模块规范. module.exports 是CommonJS模块规范,通过require 导入 a.js: var x = 'hello' module.exports.x ...