CoreCLR源码

前一篇我们看到了CoreCLR中对Object的定义,这一篇我们将会看CoreCLR中对new的定义和处理
new对于.Net程序员们来说同样是耳熟能详的关键词,我们每天都会用到new,然而new究竟是什么?

因为篇幅限制和避免难度跳的太高,这一篇将不会详细讲解以下的内容,请耐心等待后续的文章

  • GC如何分配内存
  • JIT如何解析IL
  • JIT如何生成机器码

使用到的名词和缩写

以下的内容将会使用到一些名词和缩写,如果碰到看不懂的可以到这里来对照

BasicBlock: 在同一个分支(Branch)的一群指令,使用双向链表连接
GenTree: 语句树,节点类型以GT开头
Importation: 从BasicBlock生成GenTree的过程
Lowering: 具体化语句树,让语句树的各个节点可以明确的转换到机器码
SSA: Static Single Assignment
R2R: Ready To Run
Phases: JIT编译IL到机器码经过的各个阶段
JIT: Just In Time
CEE: CLR Execute Engine
ee: Execute Engine
EH: Exception Handling
Cor: CoreCLR
comp: Compiler
fg: FlowGraph
imp: Import
LDLOCA: Load Local Variable
gt: Generate
hlp: Help
Ftn: Function
MP: Multi Process
CER: Constrained Execution Regions
TLS: Thread Local Storage

.Net中的三种new

请看图中的代码和生成的IL,我们可以看到尽管同样是new,却生成了三种不同的IL代码


  • 对class的new,IL指令是newobj
  • 对array的new,IL指令是newarr
  • 对struct的new,因为myStruct已经在本地变量里面了,new的时候仅仅是调用ldloca加载然后调用构造函数

我们先来看newobj和newarr这两个指令在coreclr中是怎么定义的
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/inc/opcode.def#L153

OPDEF(CEE_NEWOBJ, "newobj", VarPop, PushRef, InlineMethod, IObjModel, 1, 0xFF, 0x73, CALL)
OPDEF(CEE_NEWARR, "newarr", PopI, PushRef, InlineType, IObjModel, 1, 0xFF, 0x8D, NEXT)

我们可以看到这两个指令的定义,名称分别是CEE_NEWOBJ和CEE_NEWARR,请记住这两个名称

第一种new(对class的new)生成了什么机器码

接下来我们将看看coreclr是如何把CEE_NEWOBJ指令变为机器码的
在讲解之前请先大概了解JIT的工作流程,JIT编译按函数为单位,当调用函数时会自动触发JIT编译

  • 把函数的IL转换为BasicBlock(基本代码块)
  • 从BasicBlock(基本代码块)生成GenTree(语句树)
  • 对GenTree(语句树)进行Morph(变形)
  • 对GenTree(语句树)进行Lowering(具体化)
  • 根据GenTree(语句树)生成机器码

下面的代码虽然进过努力的提取,但仍然比较长,请耐心阅读

我们从JIT的入口函数开始看,这个函数会被EE(运行引擎)调用
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/inc/corjit.h#L350
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/ee_il_dll.cpp#L279
注: 按微软文档中说CILJit是32位上的实现,PreJit是64位上的实现,但实际我找不到PreJit在哪里

CorJitResult CILJit::compileMethod(
ICorJitInfo* compHnd, CORINFO_METHOD_INFO* methodInfo, unsigned flags, BYTE** entryAddress, ULONG* nativeSizeOfCode)
{
// 省略部分代码......
assert(methodInfo->ILCode);
result = jitNativeCode(methodHandle, methodInfo->scope, compHnd, methodInfo, &methodCodePtr, nativeSizeOfCode,
&jitFlags, nullptr);
// 省略部分代码......
return CorJitResult(result);
}

jitNativeCode是一个负责使用JIT编译单个函数的静态函数,会在内部为编译的函数创建单独的Compiler实例
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/compiler.cpp#L6075

int jitNativeCode(CORINFO_METHOD_HANDLE methodHnd,
CORINFO_MODULE_HANDLE classPtr,
COMP_HANDLE compHnd,
CORINFO_METHOD_INFO* methodInfo,
void** methodCodePtr,
ULONG* methodCodeSize,
JitFlags* compileFlags,
void* inlineInfoPtr)
{
// 省略部分代码......
pParam->pComp->compInit(pParam->pAlloc, pParam->inlineInfo);
pParam->pComp->jitFallbackCompile = pParam->jitFallbackCompile;
// Now generate the code
pParam->result =
pParam->pComp->compCompile(pParam->methodHnd, pParam->classPtr, pParam->compHnd, pParam->methodInfo,
pParam->methodCodePtr, pParam->methodCodeSize, pParam->compileFlags);
// 省略部分代码......
return result;
}

Compiler::compCompile是Compiler类提供的入口函数,作用同样是编译函数
注意这个函数有7个参数,等一会还会有一个同名但只有3个参数的函数
这个函数主要调用了Compiler::compCompileHelper函数
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/compiler.cpp#L4693

int Compiler::compCompile(CORINFO_METHOD_HANDLE methodHnd,
CORINFO_MODULE_HANDLE classPtr,
COMP_HANDLE compHnd,
CORINFO_METHOD_INFO* methodInfo,
void** methodCodePtr,
ULONG* methodCodeSize,
JitFlags* compileFlags)
{
// 省略部分代码......
pParam->result = pParam->pThis->compCompileHelper(pParam->classPtr, pParam->compHnd, pParam->methodInfo,
pParam->methodCodePtr, pParam->methodCodeSize,
pParam->compileFlags, pParam->instVerInfo);
// 省略部分代码......
return param.result;
}

让我们继续看Compiler::compCompileHelper
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/compiler.cpp#L5294

int Compiler::compCompileHelper(CORINFO_MODULE_HANDLE            classPtr,
COMP_HANDLE compHnd,
CORINFO_METHOD_INFO* methodInfo,
void** methodCodePtr,
ULONG* methodCodeSize,
JitFlags* compileFlags,
CorInfoInstantiationVerification instVerInfo)
{
// 省略部分代码......
// 初始化本地变量表
lvaInitTypeRef(); // 省略部分代码......
// 查找所有BasicBlock
fgFindBasicBlocks(); // 省略部分代码......
// 调用3个参数的compCompile函数,注意不是7个函数的compCompile函数
compCompile(methodCodePtr, methodCodeSize, compileFlags); // 省略部分代码......
return CORJIT_OK;
}

现在到了3个参数的compCompile,这个函数被微软认为是JIT最被感兴趣的入口函数
你可以额外阅读一下微软的JIT介绍文档
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/compiler.cpp#L4078

//*********************************************************************************************
// #Phases
//
// This is the most interesting 'toplevel' function in the JIT. It goes through the operations of
// importing, morphing, optimizations and code generation. This is called from the EE through the
// code:CILJit::compileMethod function.
//
// For an overview of the structure of the JIT, see:
// https://github.com/dotnet/coreclr/blob/master/Documentation/botr/ryujit-overview.md
//
void Compiler::compCompile(void** methodCodePtr, ULONG* methodCodeSize, JitFlags* compileFlags)
{
// 省略部分代码......
// 转换BasicBlock(基本代码块)到GenTree(语句树)
fgImport(); // 省略部分代码......
// 这里会进行各个处理步骤(Phases),如Inline和优化等 // 省略部分代码......
// 转换GT_ALLOCOBJ节点到GT_CALL节点(分配内存=调用帮助函数)
ObjectAllocator objectAllocator(this);
objectAllocator.Run(); // 省略部分代码......
// 创建本地变量表和计算各个变量的引用计数
lvaMarkLocalVars(); // 省略部分代码......
// 具体化语句树
Lowering lower(this, m_pLinearScan); // PHASE_LOWERING
lower.Run(); // 省略部分代码......
// 生成机器码
codeGen->genGenerateCode(methodCodePtr, methodCodeSize);
}

到这里你应该大概知道JIT在总体上做了什么事情
接下来我们来看Compiler::fgImport函数,这个函数负责把BasicBlock(基本代码块)转换到GenTree(语句树)
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/flowgraph.cpp#L6663

void Compiler::fgImport()
{
// 省略部分代码......
impImport(fgFirstBB);
// 省略部分代码......
}

再看Compiler::impImport
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/importer.cpp#L9207

void Compiler::impImport(BasicBlock* method)
{
// 省略部分代码......
/* Import blocks in the worker-list until there are no more */
while (impPendingList)
{
PendingDsc* dsc = impPendingList;
impPendingList = impPendingList->pdNext;
// 省略部分代码......
/* Now import the block */
impImportBlock(dsc->pdBB);
}
}

再看Compiler::impImportBlock
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/importer.cpp#L15321

//***************************************************************
// Import the instructions for the given basic block. Perform
// verification, throwing an exception on failure. Push any successor blocks that are enabled for the first
// time, or whose verification pre-state is changed.
void Compiler::impImportBlock(BasicBlock* block)
{
// 省略部分代码......
pParam->pThis->impImportBlockCode(pParam->block); }

在接下来的Compiler::impImportBlockCode函数里面我们终于可以看到对CEE_NEWOBJ指令的处理了
这个函数有5000多行,推荐直接搜索case CEE_NEWOBJ来看以下的部分
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/importer.cpp#L9207

/*****************************************************************************
* Import the instr for the given basic block
*/
void Compiler::impImportBlockCode(BasicBlock* block)
{
// 省略部分代码......
// 处理CEE_NEWOBJ指令
case CEE_NEWOBJ:
// 在这里微软给出了有三种情况
// 一种是对象是array,一种是对象有活动的长度(例如string),一种是普通的class
// 在这里我们只分析第三种情况
// There are three different cases for new
// Object size is variable (depends on arguments)
// 1) Object is an array (arrays treated specially by the EE)
// 2) Object is some other variable sized object (e.g. String)
// 3) Class Size can be determined beforehand (normal case)
// In the first case, we need to call a NEWOBJ helper (multinewarray)
// in the second case we call the constructor with a '0' this pointer
// In the third case we alloc the memory, then call the constuctor // 省略部分代码......
// 创建一个GT_ALLOCOBJ类型的GenTree(语句树)节点,用于分配内存
op1 = gtNewAllocObjNode(info.compCompHnd->getNewHelper(&resolvedToken, info.compMethodHnd),
resolvedToken.hClass, TYP_REF, op1); // 省略部分代码......
// 因为GT_ALLOCOBJ仅负责分配内存,我们还需要调用构造函数
// 这里复用了CEE_CALL指令的处理
goto CALL; // 省略部分代码......
CALL: // memberRef should be set. // 省略部分代码......
// 创建一个GT_CALL类型的GenTree(语句树)节点,用于调用构造函数
callTyp = impImportCall(opcode, &resolvedToken, constraintCall ? &constrainedResolvedToken : nullptr,
newObjThisPtr, prefixFlags, &callInfo, opcodeOffs);

请记住上面代码中新建的两个GenTree(语句树)节点

  • 节点GT_ALLOCOBJ用于分配内存
  • 节点GT_CALL用于调用构造函数

在上面的代码我们可以看到在生成GT_ALLOCOBJ类型的节点时还传入了一个newHelper参数,这个newHelper正是分配内存函数的一个标识(索引值)
在CoreCLR中有很多HelperFunc(帮助函数)供JIT生成的代码调用
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/jitinterface.cpp#L5894

CorInfoHelpFunc CEEInfo::getNewHelper(CORINFO_RESOLVED_TOKEN * pResolvedToken, CORINFO_METHOD_HANDLE callerHandle)
{
// 省略部分代码......
MethodTable* pMT = VMClsHnd.AsMethodTable(); // 省略部分代码......
result = getNewHelperStatic(pMT); // 省略部分代码......
return result;
}

看CEEInfo::getNewHelperStatic
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/jitinterface.cpp#L5941

CorInfoHelpFunc CEEInfo::getNewHelperStatic(MethodTable * pMT)
{
// 省略部分代码......
// 这里有很多判断,例如是否是Com对象或拥有析构函数,默认会返回CORINFO_HELP_NEWFAST
// Slow helper is the default
CorInfoHelpFunc helper = CORINFO_HELP_NEWFAST; // 省略部分代码......
return helper;
}

到这里,我们可以知道新建的两个节点带有以下的信息

  • GT_ALLOCOBJ节点

    • 分配内存的帮助函数标识,默认是CORINFO_HELP_NEWFAST
  • GT_CALL节点
    • 构造函数的句柄

在使用fgImport生成了GenTree(语句树)以后,还不能直接用这个树来生成机器代码,需要经过很多步的变换
其中的一步变换会把GT_ALLOCOBJ节点转换为GT_CALL节点,因为分配内存实际上是一个对JIT专用的帮助函数的调用
这个变换在ObjectAllocator中实现,ObjectAllocator是JIT编译过程中的一个阶段(Phase)
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/objectalloc.cpp#L27

void ObjectAllocator::DoPhase()
{
// 省略部分代码......
MorphAllocObjNodes();
}

MorphAllocObjNodes用于查找所有节点,如果是GT_ALLOCOBJ则进行转换
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/objectalloc.cpp#L63

void ObjectAllocator::MorphAllocObjNodes()
{
// 省略部分代码......
for (GenTreeStmt* stmt = block->firstStmt(); stmt; stmt = stmt->gtNextStmt)
{
// 省略部分代码......
bool canonicalAllocObjFound = false; // 省略部分代码......
if (op2->OperGet() == GT_ALLOCOBJ)
canonicalAllocObjFound = true; // 省略部分代码......
if (canonicalAllocObjFound)
{
// 省略部分代码......
op2 = MorphAllocObjNodeIntoHelperCall(asAllocObj);
}
}
}

MorphAllocObjNodeIntoHelperCall的定义
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/objectalloc.cpp#L152

// MorphAllocObjNodeIntoHelperCall: Morph a GT_ALLOCOBJ node into an
// allocation helper call.
GenTreePtr ObjectAllocator::MorphAllocObjNodeIntoHelperCall(GenTreeAllocObj* allocObj)
{
// 省略部分代码......
GenTreePtr helperCall = comp->fgMorphIntoHelperCall(allocObj, allocObj->gtNewHelper, comp->gtNewArgList(op1));
return helperCall;
}

fgMorphIntoHelperCall的定义
这个函数转换GT_ALLOCOBJ节点到GT_CALL节点,并且获取指向分配内存的函数的指针
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/morph.cpp#L61

GenTreePtr Compiler::fgMorphIntoHelperCall(GenTreePtr tree, int helper, GenTreeArgList* args)
{
tree->ChangeOper(GT_CALL);
tree->gtFlags |= GTF_CALL; // 省略部分代码......
// 如果GT_ALLOCOBJ中帮助函数的标识是CORINFO_HELP_NEWFAST,这里就是eeFindHelper(CORINFO_HELP_NEWFAST)
// eeFindHelper会把帮助函数的表示转换为帮助函数的句柄
tree->gtCall.gtCallType = CT_HELPER;
tree->gtCall.gtCallMethHnd = eeFindHelper(helper); // 省略部分代码......
tree = fgMorphArgs(tree->AsCall());
return tree;
}

到这里,我们可以知道新建的两个节点变成了这样

  • GT_CALL节点 (调用帮助函数)

    • 分配内存的帮助函数的句柄
  • GT_CALL节点 (调用Managed函数)
    • 构造函数的句柄

接下来JIT还会对GenTree(语句树)做出大量处理,这里省略说明,接下来我们来看机器码的生成
函数CodeGen::genCallInstruction负责把GT_CALL节点转换为汇编
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/codegenxarch.cpp#L5934

// Produce code for a GT_CALL node
void CodeGen::genCallInstruction(GenTreePtr node)
{
// 省略部分代码......
if (callType == CT_HELPER)
{
// 把句柄转换为帮助函数的句柄,默认是CORINFO_HELP_NEWFAST
helperNum = compiler->eeGetHelperNum(methHnd);
// 获取指向帮助函数的指针
// 这里等于调用compiler->compGetHelperFtn(CORINFO_HELP_NEWFAST, ...)
addr = compiler->compGetHelperFtn(helperNum, (void**)&pAddr);
}
else
{
// 调用普通函数
// Direct call to a non-virtual user function.
addr = call->gtDirectCallAddress;
}
}

我们来看下compGetHelperFtn究竟把CORINFO_HELP_NEWFAST转换到了什么函数
compGetHelperFtn的定义
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/compiler.hpp#L1907

void* Compiler::compGetHelperFtn(CorInfoHelpFunc ftnNum,        /* IN  */
void** ppIndirection) /* OUT */
{
// 省略部分代码......
addr = info.compCompHnd->getHelperFtn(ftnNum, ppIndirection);
return addr;
}

getHelperFtn的定义
这里我们可以看到获取了hlpDynamicFuncTable这个函数表中的函数
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/jitinterface.cpp#L10369

void* CEEJitInfo::getHelperFtn(CorInfoHelpFunc    ftnNum,         /* IN  */
void ** ppIndirection) /* OUT */
{
// 省略部分代码......
pfnHelper = hlpDynamicFuncTable[dynamicFtnNum].pfnHelper; // 省略部分代码......
result = (LPVOID)GetEEFuncEntryPoint(pfnHelper);
return result;
}

hlpDynamicFuncTable函数表使用了jithelpers.h中的定义,其中CORINFO_HELP_NEWFAST对应的函数如下
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/inc/jithelpers.h#L78

JITHELPER(CORINFO_HELP_NEWFAST,                     JIT_New,    CORINFO_HELP_SIG_REG_ONLY)

可以看到对应了JIT_New,这个就是JIT生成的代码调用分配内存的函数了,JIT_New的定义如下
需要注意的是函数表中的JIT_New在满足一定条件时会被替换为更快的实现,但作用和JIT_New是一样的,这一块将在后面提及
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/jithelpers.cpp#L2908

HCIMPL1(Object*, JIT_New, CORINFO_CLASS_HANDLE typeHnd_)
{
// 省略部分代码......
MethodTable *pMT = typeHnd.AsMethodTable(); // 省略部分代码......
// AllocateObject是分配内存的函数,这个函数供CoreCLR的内部代码或非托管代码调用
// JIT_New是对这个函数的一个包装,仅供JIT生成的代码调用
newobj = AllocateObject(pMT); // 省略部分代码......
return(OBJECTREFToObject(newobj));
}
HCIMPLEND

总结:
JIT从CEE_NEWOBJ生成了两段代码,一段是调用JIT_New函数分配内存的代码,一段是调用构造函数的代码

第二种new(对array的new)生成了什么机器码

我们来看一下CEE_NEWARR指令是怎样处理的,因为前面已经花了很大篇幅介绍对CEE_NEWOBJ的处理,这里仅列出不同的部分
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/importer.cpp#L13334

/*****************************************************************************
* Import the instr for the given basic block
*/
void Compiler::impImportBlockCode(BasicBlock* block)
{
// 省略部分代码......
// 处理CEE_NEWARR指令
case CEE_NEWARR: // 省略部分代码......
args = gtNewArgList(op1, op2); // 生成GT_CALL类型的节点调用帮助函数
/* Create a call to 'new' */
// Note that this only works for shared generic code because the same helper is used for all
// reference array types
op1 = gtNewHelperCallNode(info.compCompHnd->getNewArrHelper(resolvedToken.hClass), TYP_REF, 0, args);
}

我们可以看到CEE_NEWARR直接生成了GT_CALL节点,不像CEE_NEWOBJ需要进一步的转换
getNewArrHelper返回了调用的帮助函数,我们来看一下getNewArrHelper
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/jitinterface.cpp#L6035

/***********************************************************************/
// <REVIEW> this only works for shared generic code because all the
// helpers are actually the same. If they were different then things might
// break because the same helper would end up getting used for different but
// representation-compatible arrays (e.g. one with a default constructor
// and one without) </REVIEW>
CorInfoHelpFunc CEEInfo::getNewArrHelper (CORINFO_CLASS_HANDLE arrayClsHnd)
{
// 省略部分代码......
TypeHandle arrayType(arrayClsHnd);
result = getNewArrHelperStatic(arrayType); // 省略部分代码......
return result;
}

再看getNewArrHelperStatic,我们可以看到一般情况下会返回CORINFO_HELP_NEWARR_1_OBJ
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/jitinterface.cpp#L6060

CorInfoHelpFunc CEEInfo::getNewArrHelperStatic(TypeHandle clsHnd)
{
// 省略部分代码......
if (CorTypeInfo::IsGenericVariable(elemType))
{
result = CORINFO_HELP_NEWARR_1_OBJ;
}
else if (CorTypeInfo::IsObjRef(elemType))
{
// It is an array of object refs
result = CORINFO_HELP_NEWARR_1_OBJ;
}
else
{
// These cases always must use the slow helper
// 省略部分代码......
}
return result;
{

CORINFO_HELP_NEWARR_1_OBJ对应的函数如下
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/inc/jithelpers.h#L86

DYNAMICJITHELPER(CORINFO_HELP_NEWARR_1_OBJ, JIT_NewArr1,CORINFO_HELP_SIG_REG_ONLY)

可以看到对应了JIT_NewArr1这个包装给JIT调用的帮助函数
和JIT_New一样,在满足一定条件时会被替换为更快的实现
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/jithelpers.cpp#L3303

HCIMPL2(Object*, JIT_NewArr1, CORINFO_CLASS_HANDLE arrayTypeHnd_, INT_PTR size)
{
// 省略部分代码......
CorElementType elemType = pArrayClassRef->GetArrayElementTypeHandle().GetSignatureCorElementType(); if (CorTypeInfo::IsPrimitiveType(elemType)
{
// 省略部分代码......
// 如果类型是基元类型(int, double等)则使用更快的FastAllocatePrimitiveArray函数
newArray = FastAllocatePrimitiveArray(pArrayClassRef->GetMethodTable(), static_cast<DWORD>(size), bAllocateInLargeHeap);
}
else
{
// 省略部分代码......
// 默认使用AllocateArrayEx函数
INT32 size32 = (INT32)size;
newArray = AllocateArrayEx(typeHnd, &size32, 1);
} // 省略部分代码......
return(OBJECTREFToObject(newArray));
}
HCIMPLEND

总结:
JIT从CEE_NEWARR只生成了一段代码,就是调用JIT_NewArr1函数的代码

第三种new(对struct的new)生成了什么机器码

这种new会在栈(stack)分配内存,所以不需要调用任何分配内存的函数
在一开始的例子中,myStruct在编译时就已经定义为一个本地变量,对本地变量的需要的内存会在函数刚进入的时候一并分配
这里我们先来看本地变量所需要的内存是怎么计算的

先看Compiler::lvaAssignVirtualFrameOffsetsToLocals
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/lclvars.cpp#L4863

/*****************************************************************************
* lvaAssignVirtualFrameOffsetsToLocals() : Assign virtual stack offsets to
* locals, temps, and anything else. These will all be negative offsets
* (stack grows down) relative to the virtual '0'/return address
*/
void Compiler::lvaAssignVirtualFrameOffsetsToLocals()
{
// 省略部分代码......
for (cur = 0; alloc_order[cur]; cur++)
{
// 省略部分代码......
for (lclNum = 0, varDsc = lvaTable; lclNum < lvaCount; lclNum++, varDsc++)
{
// 省略部分代码......
// Reserve the stack space for this variable
stkOffs = lvaAllocLocalAndSetVirtualOffset(lclNum, lvaLclSize(lclNum), stkOffs);
}
}
}

再看Compiler::lvaAllocLocalAndSetVirtualOffset
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/lclvars.cpp#L5537

int Compiler::lvaAllocLocalAndSetVirtualOffset(unsigned lclNum, unsigned size, int stkOffs)
{
// 省略部分代码......
/* Reserve space on the stack by bumping the frame size */
lvaIncrementFrameSize(size);
stkOffs -= size;
lvaTable[lclNum].lvStkOffs = stkOffs; // 省略部分代码......
return stkOffs;
}

再看Compiler::lvaIncrementFrameSize
我们可以看到最终会加到compLclFrameSize这个变量中,这个变量就是当前函数总共需要在栈(Stack)分配的内存大小
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/lclvars.cpp#L3528

inline void Compiler::lvaIncrementFrameSize(unsigned size)
{
if (size > MAX_FrameSize || compLclFrameSize + size > MAX_FrameSize)
{
BADCODE("Frame size overflow");
}
compLclFrameSize += size;
}

现在来看生成机器码的代码,在栈分配内存的代码会在CodeGen::genFnProlog生成
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/codegencommon.cpp#L8140

void CodeGen::genFnProlog()
{
// 省略部分代码......
// ARM64和其他平台的调用时机不一样,但是参数一样
genAllocLclFrame(compiler->compLclFrameSize, initReg, &initRegZeroed, intRegState.rsCalleeRegArgMaskLiveIn);
}

再看CodeGen::genAllocLclFrame,这里就是分配栈内存的代码了,简单的rsp(esp)减去了frameSize
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/codegencommon.cpp#L5846

/*-----------------------------------------------------------------------------
*
* Probe the stack and allocate the local stack frame: subtract from SP.
* On ARM64, this only does the probing; allocating the frame is done when callee-saved registers are saved.
*/
void CodeGen::genAllocLclFrame(unsigned frameSize, regNumber initReg, bool* pInitRegZeroed, regMaskTP maskArgRegsLiveIn)
{
// 省略部分代码......
// sub esp, frameSize 6
inst_RV_IV(INS_sub, REG_SPBASE, frameSize, EA_PTRSIZE);
}

总结:
JIT对struct的new会生成统一在栈分配内存的代码,所以你在IL中看不到new struct的指令
调用构造函数的代码会从后面的call指令生成

第一种new(对class的new)做了什么

从上面的分析我们可以知道第一种new先调用JIT_New分配内存,然后调用构造函数
在上面JIT_New的源代码中可以看到,JIT_New内部调用了AllocateObject

先看AllocateObject函数
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/gchelpers.cpp#L931

// AllocateObject will throw OutOfMemoryException so don't need to check
// for NULL return value from it.
OBJECTREF AllocateObject(MethodTable *pMT
#ifdef FEATURE_COMINTEROP
, bool fHandleCom
#endif
)
{
// 省略部分代码......
Object *orObject = NULL; // 如果类型有重要的析构函数,预编译所有相关的函数(详细可以搜索CER)
// 同一个类型只会处理一次
if (pMT->HasCriticalFinalizer())
PrepareCriticalFinalizerObject(pMT); // 省略部分代码......
DWORD baseSize = pMT->GetBaseSize(); // 调用gc的帮助函数分配内存,如果需要向8对齐则调用AllocAlign8,否则调用Alloc
if (pMT->RequiresAlign8())
{
// 省略部分代码......
orObject = (Object *) AllocAlign8(baseSize,
pMT->HasFinalizer(),
pMT->ContainsPointers(),
pMT->IsValueType());
}
else
{
orObject = (Object *) Alloc(baseSize,
pMT->HasFinalizer(),
pMT->ContainsPointers());
} // 检查同步块索引(SyncBlock)是否为0
// verify zero'd memory (at least for sync block)
_ASSERTE( orObject->HasEmptySyncBlockInfo() ); // 设置类型信息(MethodTable)
if ((baseSize >= LARGE_OBJECT_SIZE))
{
orObject->SetMethodTableForLargeObject(pMT);
GCHeap::GetGCHeap()->PublishObject((BYTE*)orObject);
}
else
{
orObject->SetMethodTable(pMT);
} // 省略部分代码......
return UNCHECKED_OBJECTREF_TO_OBJECTREF(oref);
}

再看Alloc函数
源代码:

// There are only three ways to get into allocate an object.
// * Call optimized helpers that were generated on the fly. This is how JIT compiled code does most
// allocations, however they fall back code:Alloc, when for all but the most common code paths. These
// helpers are NOT used if profiler has asked to track GC allocation (see code:TrackAllocations)
// * Call code:Alloc - When the jit helpers fall back, or we do allocations within the runtime code
// itself, we ultimately call here.
// * Call code:AllocLHeap - Used very rarely to force allocation to be on the large object heap.
//
// While this is a choke point into allocating an object, it is primitive (it does not want to know about
// MethodTable and thus does not initialize that poitner. It also does not know if the object is finalizable
// or contains pointers. Thus we quickly wrap this function in more user-friendly ones that know about
// MethodTables etc. (see code:FastAllocatePrimitiveArray code:AllocateArrayEx code:AllocateObject)
//
// You can get an exhaustive list of code sites that allocate GC objects by finding all calls to
// code:ProfilerObjectAllocatedCallback (since the profiler has to hook them all).
inline Object* Alloc(size_t size, BOOL bFinalize, BOOL bContainsPointers )
{
// 省略部分代码......
// We don't want to throw an SO during the GC, so make sure we have plenty
// of stack before calling in.
INTERIOR_STACK_PROBE_FOR(GetThread(), static_cast<unsigned>(DEFAULT_ENTRY_PROBE_AMOUNT * 1.5));
if (GCHeapUtilities::UseAllocationContexts())
retVal = GCHeapUtilities::GetGCHeap()->Alloc(GetThreadAllocContext(), size, flags);
else
retVal = GCHeapUtilities::GetGCHeap()->Alloc(size, flags); if (!retVal)
{
ThrowOutOfMemory();
} END_INTERIOR_STACK_PROBE;
return retVal;
}

总结:
第一种new做的事情主要有

  • 调用JIT_New

    • 从GCHeap中申请一块内存
    • 设置类型信息(MethodTable)
    • 同步块索引默认为0,不需要设置
  • 调用构造函数

第二种new(对array的new)做了什么

第二种new只调用了JIT_NewArr1,从上面JIT_NewArr1的源代码可以看到
如果元素的类型是基元类型(int, double等)则会调用FastAllocatePrimitiveArray,否则会调用AllocateArrayEx

先看FastAllocatePrimitiveArray函数
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/gchelpers.cpp#L563

/*
* Allocates a single dimensional array of primitive types.
*/
OBJECTREF FastAllocatePrimitiveArray(MethodTable* pMT, DWORD cElements, BOOL bAllocateInLargeHeap)
{
// 省略部分代码......
// 检查元素数量不能大于一个硬性限制
SIZE_T componentSize = pMT->GetComponentSize();
if (cElements > MaxArrayLength(componentSize))
ThrowOutOfMemory(); // 检查总大小不能溢出
S_SIZE_T safeTotalSize = S_SIZE_T(cElements) * S_SIZE_T(componentSize) + S_SIZE_T(pMT->GetBaseSize());
if (safeTotalSize.IsOverflow())
ThrowOutOfMemory(); size_t totalSize = safeTotalSize.Value(); // 省略部分代码......
// 调用gc的帮助函数分配内存
ArrayBase* orObject;
if (bAllocateInLargeHeap)
{
orObject = (ArrayBase*) AllocLHeap(totalSize, FALSE, FALSE);
}
else
{
ArrayTypeDesc *pArrayR8TypeDesc = g_pPredefinedArrayTypes[ELEMENT_TYPE_R8];
if (DATA_ALIGNMENT < sizeof(double) && pArrayR8TypeDesc != NULL && pMT == pArrayR8TypeDesc->GetMethodTable() && totalSize < LARGE_OBJECT_SIZE - MIN_OBJECT_SIZE)
{
// Creation of an array of doubles, not in the large object heap.
// We want to align the doubles to 8 byte boundaries, but the GC gives us pointers aligned
// to 4 bytes only (on 32 bit platforms). To align, we ask for 12 bytes more to fill with a
// dummy object.
// If the GC gives us a 8 byte aligned address, we use it for the array and place the dummy
// object after the array, otherwise we put the dummy object first, shifting the base of
// the array to an 8 byte aligned address.
// Note: on 64 bit platforms, the GC always returns 8 byte aligned addresses, and we don't
// execute this code because DATA_ALIGNMENT < sizeof(double) is false. _ASSERTE(DATA_ALIGNMENT == sizeof(double)/2);
_ASSERTE((MIN_OBJECT_SIZE % sizeof(double)) == DATA_ALIGNMENT); // used to change alignment
_ASSERTE(pMT->GetComponentSize() == sizeof(double));
_ASSERTE(g_pObjectClass->GetBaseSize() == MIN_OBJECT_SIZE);
_ASSERTE(totalSize < totalSize + MIN_OBJECT_SIZE);
orObject = (ArrayBase*) Alloc(totalSize + MIN_OBJECT_SIZE, FALSE, FALSE); Object *orDummyObject;
if((size_t)orObject % sizeof(double))
{
orDummyObject = orObject;
orObject = (ArrayBase*) ((size_t)orObject + MIN_OBJECT_SIZE);
}
else
{
orDummyObject = (Object*) ((size_t)orObject + totalSize);
}
_ASSERTE(((size_t)orObject % sizeof(double)) == 0);
orDummyObject->SetMethodTable(g_pObjectClass);
}
else
{
orObject = (ArrayBase*) Alloc(totalSize, FALSE, FALSE);
bPublish = (totalSize >= LARGE_OBJECT_SIZE);
}
} // 设置类型信息(MethodTable)
// Initialize Object
orObject->SetMethodTable( pMT );
_ASSERTE(orObject->GetMethodTable() != NULL); // 设置数组长度
orObject->m_NumComponents = cElements; // 省略部分代码......
return( ObjectToOBJECTREF((Object*)orObject) );
}

再看AllocateArrayEx函数,这个函数比起上面的函数多出了对多维数组的处理
JIT_NewArr1调用AllocateArrayEx时传了3个参数,剩下2个参数是可选参数
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/gchelpers.cpp#L282

// Handles arrays of arbitrary dimensions
//
// If dwNumArgs is set to greater than 1 for a SZARRAY this function will recursively
// allocate sub-arrays and fill them in.
//
// For arrays with lower bounds, pBounds is <lower bound 1>, <count 1>, <lower bound 2>, ...
OBJECTREF AllocateArrayEx(TypeHandle arrayType, INT32 *pArgs, DWORD dwNumArgs, BOOL bAllocateInLargeHeap
DEBUG_ARG(BOOL bDontSetAppDomain))
{
// 省略部分代码......
ArrayBase * orArray = NULL; // 省略部分代码......
// 调用gc的帮助函数分配内存
if (bAllocateInLargeHeap)
{
orArray = (ArrayBase *) AllocLHeap(totalSize, FALSE, pArrayMT->ContainsPointers());
// 设置类型信息(MethodTable)
orArray->SetMethodTableForLargeObject(pArrayMT);
}
else
{
#ifdef FEATURE_64BIT_ALIGNMENT
MethodTable *pElementMT = arrayDesc->GetTypeParam().GetMethodTable();
if (pElementMT->RequiresAlign8() && pElementMT->IsValueType())
{
// This platform requires that certain fields are 8-byte aligned (and the runtime doesn't provide
// this guarantee implicitly, e.g. on 32-bit platforms). Since it's the array payload, not the
// header that requires alignment we need to be careful. However it just so happens that all the
// cases we care about (single and multi-dim arrays of value types) have an even number of DWORDs
// in their headers so the alignment requirements for the header and the payload are the same.
_ASSERTE(((pArrayMT->GetBaseSize() - SIZEOF_OBJHEADER) & 7) == 0);
orArray = (ArrayBase *) AllocAlign8(totalSize, FALSE, pArrayMT->ContainsPointers(), FALSE);
}
else
#endif
{
orArray = (ArrayBase *) Alloc(totalSize, FALSE, pArrayMT->ContainsPointers());
}
// 设置类型信息(MethodTable)
orArray->SetMethodTable(pArrayMT);
} // 设置数组长度
// Initialize Object
orArray->m_NumComponents = cElements; // 省略部分代码......
return ObjectToOBJECTREF((Object *) orArray);
}

总结:
第二种new做的事情主要有

  • 调用JIT_NewArr1

    • 从GCHeap中申请一块内存
    • 设置类型信息(MethodTable)
    • 设置数组长度(m_NumComponents)
    • 不会调用构造函数,所以所有内容都会为0(所有成员都会为默认值)

第三种new(对struct的new)做了什么

对struct的new不会从GCHeap申请内存,也不会设置类型信息(MethodTable),所以可以直接进入总结

总结:
第三种new做的事情主要有

  • 在进入函数时统一从栈(Stack)分配内存

    • 分配的内存不会包含同步块索引(SyncBlock)和类型信息(MethodTable)
  • 调用构造函数

验证第一种new(对class的new)

打开VS反汇编和内存窗口,让我们来看看第一种new实际做了什么事情

第一种new的反汇编结果如下,一共有两个call

00007FF919570B53  mov         rcx,7FF9194161A0h  // 设置第一个参数(指向MethodTable的指针)
00007FF919570B5D call 00007FF97905E350 // 调用分配内存的函数,默认是JIT_New
00007FF919570B62 mov qword ptr [rbp+38h],rax // 把地址设置到临时变量(rbp+38)
00007FF919570B66 mov r8,37BFC73068h
00007FF919570B70 mov r8,qword ptr [r8] // 设置第三个参数("hello")
00007FF919570B73 mov rcx,qword ptr [rbp+38h] // 设置第一个参数(this)
00007FF919570B77 mov edx,12345678h // 设置第二个参数(0x12345678)
00007FF919570B7C call 00007FF9195700B8 // 调用构造函数
00007FF919570B81 mov rcx,qword ptr [rbp+38h]
00007FF919570B85 mov qword ptr [rbp+50h],rcx // 把临时变量复制到myClass变量中

第一个call是分配内存使用的帮助函数,默认调用JIT_New
但是这里实际调用的不是JIT_New而是JIT_TrialAllocSFastMP_InlineGetThread函数,这是一个优化版本允许从TLS(Thread Local Storage)中快速分配内存
我们来看一下JIT_TrialAllocSFastMP_InlineGetThread函数的定义

源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/amd64/JitHelpers_InlineGetThread.asm#L59

; IN: rcx: MethodTable*
; OUT: rax: new object
LEAF_ENTRY JIT_TrialAllocSFastMP_InlineGetThread, _TEXT
mov edx, [rcx + OFFSET__MethodTable__m_BaseSize] // 从MethodTable获取需要分配的内存大小,放到edx ; m_BaseSize is guaranteed to be a multiple of 8.
PATCHABLE_INLINE_GETTHREAD r11, JIT_TrialAllocSFastMP_InlineGetThread__PatchTLSOffset
mov r10, [r11 + OFFSET__Thread__m_alloc_context__alloc_limit] // 获取从TLS分配内存的限制地址,放到r10
mov rax, [r11 + OFFSET__Thread__m_alloc_context__alloc_ptr] // 获取从TLS分配内存的当前地址,放到rax add rdx, rax // 地址 + 需要分配的内存大小,放到rdx cmp rdx, r10 // 判断是否可以从TLS分配内存
ja AllocFailed // if (rdx > r10) mov [r11 + OFFSET__Thread__m_alloc_context__alloc_ptr], rdx // 设置新的当前地址
mov [rax], rcx // 给刚刚分配到的内存设置MethodTable ifdef _DEBUG
call DEBUG_TrialAllocSetAppDomain_NoScratchArea
endif ; _DEBUG ret // 分配成功,返回 AllocFailed:
jmp JIT_NEW // 分配失败,调用默认的JIT_New函数
LEAF_END JIT_TrialAllocSFastMP_InlineGetThread, _TEXT

可以看到做的事情和JIT_New相同,但不是从堆而是从TLS中分配内存
第二个call调用构造函数,call的地址和下面的地址不一致可能是因为中间有一层包装,目前还未解明包装中的处理

最后一个call调用的是JIT_WriteBarrier

验证第二种new(对array的new)

反汇编可以看到第二种new只有一个call

00007FF919570B93  mov         rcx,7FF9195B4CFAh  // 设置第一个参数(指向MethodTable的指针)
00007FF919570B9D mov edx,378h // 设置第二个参数(数组的大小)
00007FF919570BA2 call 00007FF97905E440 // 调用分配内存的函数,默认是JIT_NewArr1
00007FF919570BA7 mov qword ptr [rbp+30h],rax // 设置到临时变量(rbp+30)
00007FF919570BAB mov rcx,qword ptr [rbp+30h]
00007FF919570BAF mov qword ptr [rbp+48h],rcx // 把临时变量复制到myArray变量中

call实际调用的是JIT_NewArr1VC_MP_InlineGetThread这个函数
和JIT_TrialAllocSFastMP_InlineGetThread一样,同样是从TLS(Thread Local Storage)中快速分配内存的函数
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/amd64/JitHelpers_InlineGetThread.asm#L207
具体代码这里就不再分析,有兴趣的可以去阅读上面的源代码

验证第三种new(对struct的new)

对struct的new会在函数进入的时候从栈分配内存,这里是减少rsp寄存器(栈顶)的值

00007FF919570B22  push        rsi  // 保存原rsi
00007FF919570B23 sub rsp,60h // 从栈分配内存
00007FF919570B27 mov rbp,rsp // 复制值到rbp
00007FF919570B2A mov rsi,rcx // 保存原rcx到rsi
00007FF919570B2D lea rdi,[rbp+28h] // rdi = rbp+28,有28个字节需要清零
00007FF919570B31 mov ecx,0Eh // rcx = 14 (计数)
00007FF919570B36 xor eax,eax // eax = 0
00007FF919570B38 rep stos dword ptr [rdi] // 把eax的值(short)设置到rdi直到rcx为0,总共清空14*2=28个字节
00007FF919570B3A mov rcx,rsi // 恢复原rcx

因为分配的内存已经在栈里面,后面只需要直接调构造函数

00007FF919570BBD  lea         rcx,[rbp+40h]  // 第一个参数 (this)
00007FF919570BC1 mov edx,55667788h // 第二个参数 (0x55667788)
00007FF919570BC6 call 00007FF9195700A0 // 调用构造函数

构造函数的反编译

中间有一个call 00007FF97942E260调用的是JIT_DbgIsJustMyCode

在函数结束时会自动释放从栈分配的内存,在最后会让rsp = rbp + 0x60,这样rsp就恢复原值了

参考

http://stackoverflow.com/questions/1255803/does-the-net-clr-jit-compile-every-method-every-time
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/gchelpers.h
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/gchelpers.cpp#L986
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/jithelpers.cpp#L2908
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/jitinterface.cpp
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/jitinterfacegen.cpp
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/amd64/JitHelpers_InlineGetThread.asm
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gcinterface.h#L230
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gc.h
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gc.cpp
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/inc/opcode.def#L153
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/inc/readytorunhelpers.h#L46
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/inc/readytorun.h#L236
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/inc/corinfo.h##L1147
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/inc/corjit.h#L350
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/ee_il_dll.cpp#L279
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/inc/jithelpers.h
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/compiler.hpp
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/compiler.h
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/compiler.cpp
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/flowgraph.cpp
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/importer.cpp
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/gentree.cpp
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/objectalloc.cpp
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/morph.cpp
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/jit/codegenxarch.cpp#L8404
https://github.com/dotnet/coreclr/blob/release/1.1.0/Documentation/botr/ryujit-overview.md
https://github.com/dotnet/coreclr/blob/master/Documentation/building/viewing-jit-dumps.md
https://github.com/dotnet/coreclr/blob/master/Documentation/building/linux-instructions.md
https://en.wikipedia.org/wiki/Basic_block
https://en.wikipedia.org/wiki/Control_flow_graph
https://en.wikipedia.org/wiki/Static_single_assignment_form
https://msdn.microsoft.com/en-us/library/windows/hardware/ff561499(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms228973(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.constrainedexecution.criticalfinalizerobject(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.interopservices.safehandle(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.interopservices.criticalhandle(v=vs.110).aspx
https://dotnet.myget.org/feed/dotnet-core/package/nuget/runtime.win7-x64.Microsoft.NETCore.Runtime.CoreCLR
http://www.codemachine.com/article_x64deepdive.html

这一篇相对前一篇多了很多c++和汇编代码,也在表面上涉及到了JIT,你们可能会说看不懂
这是正常的,我也不是完全看懂这篇提到的所有处理
欢迎大神们勘误,也欢迎小白们提问

接下来我会重点分析GC分配内存的算法,敬请期待

 

CoreCLR源码2的更多相关文章

  1. CoreCLR源码探索(一) Object是什么

    .Net程序员们每天都在和Object在打交道 如果你问一个.Net程序员什么是Object,他可能会信誓旦旦的告诉你"Object还不简单吗,就是所有类型的基类" 这个答案是对的 ...

  2. CoreCLR源码探索(二) new是什么

    前一篇我们看到了CoreCLR中对Object的定义,这一篇我们将会看CoreCLR中对new的定义和处理 new对于.Net程序员们来说同样是耳熟能详的关键词,我们每天都会用到new,然而new究竟 ...

  3. CoreCLR源码探索(三) GC内存分配器的内部实现

    在前一篇中我讲解了new是怎么工作的, 但是却一笔跳过了内存分配相关的部分. 在这一篇中我将详细讲解GC内存分配器的内部实现. 在看这一篇之前请必须先看完微软BOTR文档中的"Garbage ...

  4. CoreCLR源码探索(四) GC内存收集器的内部实现 分析篇

    在这篇中我将讲述GC Collector内部的实现, 这是CoreCLR中除了JIT以外最复杂部分,下面一些概念目前尚未有公开的文档和书籍讲到. 为了分析这部分我花了一个多月的时间,期间也多次向Cor ...

  5. CoreCLR源码探索(五) GC内存收集器的内部实现 调试篇

    在上一篇中我分析了CoreCLR中GC的内部处理, 在这一篇我将使用LLDB实际跟踪CoreCLR中GC,关于如何使用LLDB调试CoreCLR的介绍可以看: 微软官方的文档,地址 我在第3篇中的介绍 ...

  6. CoreCLR源码探索(六) NullReferenceException是如何发生的

    NullReferenceException可能是.Net程序员遇到最多的例外了, 这个例外发生的如此频繁, 以至于人们付出了巨大的努力来使用各种特性和约束试图防止它发生, 但时至今日它仍然让很多程序 ...

  7. CoreCLR源码探索(七) JIT的工作原理(入门篇)

    很多C#的初学者都会有这么一个疑问, .Net程序代码是如何被机器加载执行的? 最简单的解答是, C#会通过编译器(CodeDom, Roslyn)编译成IL代码, 然后CLR(.Net Framew ...

  8. CoreCLR源码探索(八) JIT的工作原理(详解篇)

    在上一篇我们对CoreCLR中的JIT有了一个基础的了解, 这一篇我们将更详细分析JIT的实现. JIT的实现代码主要在https://github.com/dotnet/coreclr/tree/m ...

  9. .NET CoreCLR 源码调试

    https://github.com/dotnet/coreclr/blob/master/Documentation/building/windows-instructions.md https:/ ...

随机推荐

  1. python-多线程3-生产者消费者

    '''生产者和消费者''' ''' 用python写一个多线程的生产者和消费者 生产者x x>0,有东西,print(不生产) x=0,没东西,print(生产) for循环 消费者x x=0, ...

  2. Linux网络编程 gethostbyaddr()

    C语言函数 概述: 返回对应于给定地址的主机信息. #include <winsock.h> struct hostent FAR *PASCAL FAR gethostbyaddr(co ...

  3. 推荐几个Laravel 后台管理系统

    小编推荐几个Laravel 后台管理系统 由百牛信息技术bainiu.ltd整理发布于博客园 一.不容错过的Laravel后台管理扩展包 —— Voyager 简介Voyager是一个你不容错过的La ...

  4. 前端PHP Session的实例

    登陆例子:(请注意一定要自己敲一遍,不要CV大法) 首先上一下成果图,激起同学们写的欲望,登录页如下:  点击登陆之后如下: 说明哦了,么问题.接下来自己实现一下. 首先数据库信息: 新建一个名为 l ...

  5. makefile 使用【转载】

    该篇文章为转载,是对原作者系列文章的总汇加上标注. 支持原创,请移步陈浩大神博客: http://blog.csdn.net/haoel/article/details/2886 makefile很重 ...

  6. hadoop之一:概念和整体架构

    什么是hadoop? Apache Hadoop是一款支持数据密集型分布式应用并以Apache 2.0许可协议发布的开源软件框架.它支持在商品硬件构建的大型集群上运行的应用程序.Hadoop是根据Go ...

  7. Jenkins安装配置简单使用

    安装启动是十分简单的,直接去https://jenkins.io/download/下载对应的rpm包就好了,需要注意的是我们的机器上要提前有java环境,相对应要选择你java环境可以支持的jenk ...

  8. docker 学习(七) docker 容器挂载

    1:docker的默认存放位置: $ sudo su # cd /var/lib/docker # ls -F containers/ graph/ repositories volumes/     ...

  9. selenium 点击页面链接测试

    点击页面链接测试 http://www.51testing.com/html/21/n-862721.html 需求:现在有一个网站的页面,我希望用python自动化的测试点击这个页面上所有的在本窗口 ...

  10. CodeForces 489B BerSU Ball (水题 双指针)

    B. BerSU Ball time limit per test 1 second memory limit per test 256 megabytes input standard input ...