https://www.cs.toronto.edu/~hinton/

Geoffrey E. Hinton

I am an Engineering Fellow at Google where I manage Brain Team Toronto, which is a new part of the Google Brain Team and is located at Google's Toronto office at 111 Richmond Street. Brain Team Toronto does basic research on ways to improve neural network learning techniques. I also do pro bono work as the Chief Scientific Adviser of the new Vector Institute. I am also an Emeritus Professor at the University of Toronto.

Department of Computer Science   email: geoffrey [dot] hinton [at] gmail [dot] com
University of Toronto   voice: send email
6 King's College Rd.   fax: scan and send email
Toronto, Ontario    
 

Information for prospective students:
I advise interns at Brain team Toronto. 
I also advise some of the residents in the Google Brain Residents Program.
I will not be taking any more visiting students, summer students or visitors at the University of Toronto. I will not be the sole advisor of any new graduate students, but I may co-advise a few graduate students with Prof. Roger Grosse or soon to be Prof. Jimmy Ba.

News 
Results of the 2012 competition to recognize 1000 different types of object
How George Dahl won the competition to predict the activity of potential drugs
How Vlad Mnih won the competition to predict job salaries from job advertisements
How Laurens van der Maaten won the competition to visualize a dataset of potential drugs

Using big data to make people vote against their own interests 
A possible motive for making people vote against their own interests

Basic papers on deep learning

Hinton, G. E., Osindero, S. and Teh, Y. (2006)
A fast learning algorithm for deep belief nets.
Neural Computation, 18, pp 1527-1554. [pdf
Movies of the neural network generating and recognizing digits

Hinton, G. E. and Salakhutdinov, R. R. (2006)
Reducing the dimensionality of data with neural networks.
Science, Vol. 313. no. 5786, pp. 504 - 507, 28 July 2006.
[full paper] [supporting online material (pdf)] [Matlab code]

 LeCun, Y., Bengio, Y. and Hinton, G. E. (2015)
Deep Learning
Nature, Vol. 521, pp 436-444. [pdf]

Papers on deep learning without much math

Hinton, G. E. (2007)
To recognize shapes, first learn to generate images
In P. Cisek, T. Drew and J. Kalaska (Eds.)
Computational Neuroscience: Theoretical Insights into Brain Function. Elsevier. [pdf of final draft]

Hinton, G. E. (2007)
Learning Multiple Layers of Representation.
Trends in Cognitive Sciences, Vol. 11, pp 428-434. [pdf]

Hinton, G. E. (2014)
Where do features come from?.
Cognitive Science, Vol. 38(6), pp 1078-1101. [pdf]

A practical guide to training restricted Boltzmann machines
[pdf]

Recent Papers

 Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., & Dean, J. (2017)
Outrageously large neural networks: The sparsely-gated mixture-of-experts layer
arXiv preprint arXiv:1701.06538 [pdf]

 Ba, J. L., Hinton, G. E., Mnih, V., Leibo, J. Z. and Ionescu, C. (2016)
Using Fast Weights to Attend to the Recent Past
{\it NIPS-2016}, arXiv preprint arXiv:1610.06258v2 [pdf]

 Ba, J. L., Kiros, J. R. and Hinton, G. E. (2016)
Layer normalization
{\it Deep Learning Symposium, NIPS-2016}, arXiv preprint arXiv:1607.06450 [pdf]

 Ali Eslami, S. M., Nicolas Heess, N., Theophane Weber, T., Tassa, Y., Szepesvari, D., Kavukcuoglu, K. and Hinton, G. E. (2016)
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models
{\it NIPS-2016}, arXiv preprint arXiv:1603.08575v3 [pdf]

LeCun, Y., Bengio, Y. and Hinton, G. E. (2015)
Deep Learning
Nature, Vol. 521, pp 436-444. [pdf]

Hinton, G. E., Vinyals, O., and Dean, J. (2015)
Distilling the knowledge in a neural network
arXiv preprint arXiv:1503.02531 [pdf]

Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I., & Hinton, G. E. (2014)
Grammar as a foreign language.
arXiv preprint arXiv:1412.7449 [pdf]

Hinton, G. E. (2014)
Where do features come from?.
Cognitive Science, Vol. 38(6), pp 1078-1101. [pdf]

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014)
Dropout: A simple way to prevent neural networks from overfitting
The Journal of Machine Learning Research, 15(1), pp 1929-1958. [pdf]

Srivastava, N., Salakhutdinov, R. R. and Hinton, G. E. (2013)
Modeling Documents with a Deep Boltzmann Machine
arXiv preprint arXiv:1309.6865 [pdf]

Graves, A., Mohamed, A. and Hinton, G. E. (2013)
Speech Recognition with Deep Recurrent Neural Networks
In IEEE International Conference on Acoustic Speech and Signal Processing (ICASSP 2013) Vancouver, 2013. [pdf]

Joseph Turian's map of 2500 English words produced by using t-SNE on the word feature vectors learned by Collobert & Weston, ICML 2008

Doing analogies by using vector algebra on word embeddings

Geoffrey E. Hinton的更多相关文章

  1. Yann LeCun, Geoffrey E. Hinton, and Yoshua Bengio

  2. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  3. 反向传播(BP)算法

    著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:刘皮皮链接:https://www.zhihu.com/question/24827633/answer/29120394来源 ...

  4. (转) Deep Learning Resources

    转自:http://www.jeremydjacksonphd.com/category/deep-learning/ Deep Learning Resources Posted on May 13 ...

  5. 学习Data Science/Deep Learning的一些材料

    原文发布于我的微信公众号: GeekArtT. 从CFA到如今的Data Science/Deep Learning的学习已经有一年的时间了.期间经历了自我的兴趣.擅长事务的探索和试验,有放弃了的项目 ...

  6. deep learning 的综述

    从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自 ...

  7. Deep Learning(深度学习)学习笔记整理

    申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表 ...

  8. [OpenCV] Face Detection

    即将进入涉及大量数学知识的阶段,先读下“别人家”的博文放松一下. 读罢该文,基本能了解面部识别领域的整体状况. 后生可畏. 结尾的Google Facenet中的2亿数据集,仿佛隐约听到:“你们都玩儿 ...

  9. FAQ: Machine Learning: What and How

    What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...

随机推荐

  1. 标准C程序设计七---65

    Linux应用             编程深入            语言编程 标准C程序设计七---经典C11程序设计    以下内容为阅读:    <标准C程序设计>(第7版) 作者 ...

  2. C++ 构造函数 析构函数 虚函数

    C++:构造函数和析构函数能否为虚函数? 简单回答是:构造函数不能为虚函数,而析构函数可以且常常是虚函数. (1) 构造函数不能为虚函数 让我们来看看大牛C++之父 Bjarne Stroustrup ...

  3. LightOJ 1140: How Many Zeroes? (数位DP)

    当前数位DP还不理解的点: 1:出口用i==0的方式 2:如何省略状态d(就是枚举下一个数的那个状态.当然枚举还是要的,怎么把空间省了) 总结: 1:此类DP,考虑转移的时候,应当同时考虑查询时候的情 ...

  4. 无法安装64位版本的visio/office,因为在您的PC上找到了以下32位程序的解决办法

    解决方案:按下win+R键,打开运行,输入regedit,打开注册表,依次定位到 HKEY_CLASSES_ROOT\Installer\Products,展开Products后  将这些“00005 ...

  5. html5(拖拽2)

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  6. Java 基础【06】复合赋值运算

    这是今天在开发当中遇到的问题,虽然不是很大,但还是花了一点时间去琢磨. 嗯,好了.先看一段源代码 short value=2; value-=2; 源码就是上面这个样子的,我动手写的时候因为理解的问题 ...

  7. CTSC2017游记&心得记

    先来占个坑,骗点访问量 相册地址,戳这里 Day-1 一大清早就被叫了起来,赶去回车站....结果到了那里发现早了快1h?exm?是谁一早清早扰人清梦QAQ 杭州东转车,看到5号检票口被乘警团团围了起 ...

  8. 如何轻松的把图片导入execl表格中

    在项目中有时候会遇到往数据库中导数据的时候,往往需要把图片也一起导入execl表格中,那怎么才能把图片一块导入至execl中呢?那么今天我们就来看看怎么实现吧! 如何实现?今天我们就来用jxl和poi ...

  9. CMake使用hellocmake&&make的使用

    2016-12-11   20:38:32 已经知道cmake这个东西很长的时间了,一直没有试验过,知道它是一个编译工具,在opencv和Linux下都有makefile的内容.感觉现在对源码的编译有 ...

  10. ActiveMQ测试工具

    1. 测试工具 目前使用两种测试工具进行压力测试 1. Jmeter 测试单客户端收发多主题,测试高并发,大数据量时的接收效率 2. emqtt_benchmark测试多客户端收发主题,测试高吞吐量下 ...