Matrix and Determinant

Let C be an M × N matrix with real-valued entries, i.e. C={cij}mxn

Determinant is a value that can be computed from the elements of a square matrix. The determinant of a matrix A is denoted det(A), det A, or |A|.

In the case of a 2 × 2 matrix the determinant may be defined as:

Similarly, for a 3 × 3 matrix A, its determinant is:

See more information about determinant here.

Rank of Matrix

The Rank of a matrix is the number of linearly independent rows (or columns) in it, so rank(C)≤min(m,n).

A common approach to finding the rank of a matrix is to reduce it to a simpler form, generally row echelon form, by elementary row operations. The rank equals to the number of non-zero rows of the final matrix (in row echelon form).

The reduce step can be found in this article.

Eigenvalues and Eigenvectors

For a square M × M matrix C and a vector x that is not all zeros, the values of λ satisfying

are called the eigenvalues of C . The N-vector ⃗x satisfying the equation above for an eigenvalue λ is the corresponding right eigenvector.

How to Calculate

The eigenvalues of C are then the solutions of

|(C − λIM)| = 0,

where |S| denotes the determinant of a square matrix S.

For each value of  λ, we can calculate the corresponding eigenvector x through solving the following equation:

This article gives a specific example of the calculating process.

Matrix Decompositions

Matrix diagonalization theorem

Let S be a square real-valued M × M matrix with M linearly independent eigenvectors. Then there exists an eigen decomposition

where the columns of U are the eigenvectors of S and Λ is a diagonal matrix whose diagonal entries are the eigenvalues of S in decreasing order

If the eigenvalues are distinct, then this decomposition is unique.

Symmetric diagonalization theorem

Let S be a square, symmetric real-valued M × M matrix with M linearly independent eigenvectors. Then there exists a symmetric diagonal decomposition

S = QΛQT

where the columns of Q are the orthogonal and normalized (unit length, real) eigenvectors of S, and Λ is the diagonal matrix whose entries are the eigenvalues of S.

Further, all entries of Q are real and we have Q−1 = QT.

Singular value decompositions

Let r be the rank of the M × N matrix C. Then, there is a singular- value decomposition (SVD for short) of C of the form

where

1. U is the M × M matrix whose columns are the orthogonal eigenvectors of CCT.

2. V is the N × N matrix whose columns are the orthogonal eigenvectors of CTC.

3. 

The values σi are referred to as the singular values of C.

Here is the illustration of the singular-value decomposition.

[Math Review] Linear Algebra for Singular Value Decomposition (SVD)的更多相关文章

  1. Linear Algebra From Data

    Linear Algebra Learning From Data 1.1 Multiplication Ax Using Columns of A 有关于矩阵乘法的理解深入 矩阵乘法理解为左侧有是一 ...

  2. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  3. 奇异值分解(We Recommend a Singular Value Decomposition)

    奇异值分解(We Recommend a Singular Value Decomposition) 原文作者:David Austin原文链接: http://www.ams.org/samplin ...

  4. We Recommend a Singular Value Decomposition

    We Recommend a Singular Value Decomposition Introduction The topic of this article, the singular val ...

  5. 【转】奇异值分解(We Recommend a Singular Value Decomposition)

    文章转自:奇异值分解(We Recommend a Singular Value Decomposition) 文章写的浅显易懂,很有意思.但是没找到转载方式,所以复制了过来.一个是备忘,一个是分享给 ...

  6. [转]奇异值分解(We Recommend a Singular Value Decomposition)

    原文作者:David Austin原文链接: http://www.ams.org/samplings/feature-column/fcarc-svd译者:richardsun(孙振龙) 在这篇文章 ...

  7. [转载]We Recommend a Singular Value Decomposition

    原文:http://www.ams.org/samplings/feature-column/fcarc-svd Introduction The topic of this article, the ...

  8. Python Linear algebra

    Linear algebra 1.模块文档 NAME numpy.linalg DESCRIPTION Core Linear Algebra Tools ---------------------- ...

  9. Linear Algebra lecture1 note

    Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06   Lecture 1 ...

随机推荐

  1. Linux系统属性文件详解

    1)inode概述 中文意思就是索引节点(index node)第一部分是inode 第二部分是block inode主要用来存放文件属性信息的(也就是ls - l 的结果)包含的属性信息包括文件的大 ...

  2. hadoop 启动or运行mr错误

    hadoop 错误:Incorrect configuration: namenode address dfs.namenode.servicerpc-address or dfs.namenode. ...

  3. ObjectOutputStream和ObjectInputStream的简单使用

    使用ObjectOutputStream往文本写内容时,首先在文本里面标记开始,然后是内容,最后加上结束标示.如果想再次往文本里面添加内容的话,就要加在开始标示之后和结束标示之前,不然会读取不到写入的 ...

  4. cf965c Greedy Arkady

    呸,大傻逼题,我更傻逼ref #include <iostream> using namespace std; typedef long long ll; ll n, k, m, d, a ...

  5. Asp.net自定义控件开发任我行(附1)-属性一览众山小

    元数据属性应用于服务器控件及其成员,从而提供由设计工具.ASP.NET 页分析器.ASP.NET 运行库以及公共语言运行库使用的信息.当页开发人员在可视化设计器中使用控件时,设计时属性能改进开发人员的 ...

  6. C#入门篇5-7:流程控制语句 continue语句

    #region continue语句 public class ContinueApp { public static void Fun1() { //标签打印显示1…30,若能被3整除则不打印. ; ...

  7. 34、Java集合框架List,Map,Set等全面介绍(转载)

      Java Collections Framework是Java提供的对集合进行定义,操作,和管理的包含一组接口,类的体系结构.   Java集合框架的基本接口/类层次结构: java.util.C ...

  8. ubuntu16.04中docker安装curl拒绝连接问题

    在Ubuntu16.04中安装docker ce,安装步骤按照官网说明https://docs.docker.com/engine/installation/linux/docker-ce/ubunt ...

  9. 【bzoj3687】简单题 背包dp+STL-bitset

    题目描述 小呆开始研究集合论了,他提出了关于一个数集四个问题:1.子集的异或和的算术和.2.子集的异或和的异或和.3.子集的算术和的算术和.4.子集的算术和的异或和.目前为止,小呆已经解决了前三个问题 ...

  10. vue 中父子组件传值:props和$emit

    更新----------- 1 父组件向子组件传值:通过props数组: 在vue-cli Login.vue父组件中有AcceptAndRefuse.vue子组件,首先import进子组件hello ...