Matrix and Determinant

Let C be an M × N matrix with real-valued entries, i.e. C={cij}mxn

Determinant is a value that can be computed from the elements of a square matrix. The determinant of a matrix A is denoted det(A), det A, or |A|.

In the case of a 2 × 2 matrix the determinant may be defined as:

Similarly, for a 3 × 3 matrix A, its determinant is:

See more information about determinant here.

Rank of Matrix

The Rank of a matrix is the number of linearly independent rows (or columns) in it, so rank(C)≤min(m,n).

A common approach to finding the rank of a matrix is to reduce it to a simpler form, generally row echelon form, by elementary row operations. The rank equals to the number of non-zero rows of the final matrix (in row echelon form).

The reduce step can be found in this article.

Eigenvalues and Eigenvectors

For a square M × M matrix C and a vector x that is not all zeros, the values of λ satisfying

are called the eigenvalues of C . The N-vector ⃗x satisfying the equation above for an eigenvalue λ is the corresponding right eigenvector.

How to Calculate

The eigenvalues of C are then the solutions of

|(C − λIM)| = 0,

where |S| denotes the determinant of a square matrix S.

For each value of  λ, we can calculate the corresponding eigenvector x through solving the following equation:

This article gives a specific example of the calculating process.

Matrix Decompositions

Matrix diagonalization theorem

Let S be a square real-valued M × M matrix with M linearly independent eigenvectors. Then there exists an eigen decomposition

where the columns of U are the eigenvectors of S and Λ is a diagonal matrix whose diagonal entries are the eigenvalues of S in decreasing order

If the eigenvalues are distinct, then this decomposition is unique.

Symmetric diagonalization theorem

Let S be a square, symmetric real-valued M × M matrix with M linearly independent eigenvectors. Then there exists a symmetric diagonal decomposition

S = QΛQT

where the columns of Q are the orthogonal and normalized (unit length, real) eigenvectors of S, and Λ is the diagonal matrix whose entries are the eigenvalues of S.

Further, all entries of Q are real and we have Q−1 = QT.

Singular value decompositions

Let r be the rank of the M × N matrix C. Then, there is a singular- value decomposition (SVD for short) of C of the form

where

1. U is the M × M matrix whose columns are the orthogonal eigenvectors of CCT.

2. V is the N × N matrix whose columns are the orthogonal eigenvectors of CTC.

3. 

The values σi are referred to as the singular values of C.

Here is the illustration of the singular-value decomposition.

[Math Review] Linear Algebra for Singular Value Decomposition (SVD)的更多相关文章

  1. Linear Algebra From Data

    Linear Algebra Learning From Data 1.1 Multiplication Ax Using Columns of A 有关于矩阵乘法的理解深入 矩阵乘法理解为左侧有是一 ...

  2. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  3. 奇异值分解(We Recommend a Singular Value Decomposition)

    奇异值分解(We Recommend a Singular Value Decomposition) 原文作者:David Austin原文链接: http://www.ams.org/samplin ...

  4. We Recommend a Singular Value Decomposition

    We Recommend a Singular Value Decomposition Introduction The topic of this article, the singular val ...

  5. 【转】奇异值分解(We Recommend a Singular Value Decomposition)

    文章转自:奇异值分解(We Recommend a Singular Value Decomposition) 文章写的浅显易懂,很有意思.但是没找到转载方式,所以复制了过来.一个是备忘,一个是分享给 ...

  6. [转]奇异值分解(We Recommend a Singular Value Decomposition)

    原文作者:David Austin原文链接: http://www.ams.org/samplings/feature-column/fcarc-svd译者:richardsun(孙振龙) 在这篇文章 ...

  7. [转载]We Recommend a Singular Value Decomposition

    原文:http://www.ams.org/samplings/feature-column/fcarc-svd Introduction The topic of this article, the ...

  8. Python Linear algebra

    Linear algebra 1.模块文档 NAME numpy.linalg DESCRIPTION Core Linear Algebra Tools ---------------------- ...

  9. Linear Algebra lecture1 note

    Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06   Lecture 1 ...

随机推荐

  1. Kubernetes配置Ceph RBD StorageClass

    1. 在Ceph上为Kubernetes创建一个存储池 # ceph osd pool create k8s 2. 创建k8s用户 # ceph auth get-or-create client.k ...

  2. 【小程序入门集锦】19,微信小程序个人帐号申请

    个人账号与企业帐号相比,缺少支付等功能,与个人订阅号类似.   小程序开放个人开发者申请注册,个人用户可访问微信公众平台,扫码验证个人身份后即可完成小程序帐号申请并进行代码开发.   下面我们就来说说 ...

  3. MySQL基础9-主键约束、外键约束、等值连接查询、一对一和多对多关系

    1.主键约束和外键约束 外键约束 * 外键必须是另一表的主键的值(外键要引用主键!) * 外键可以重复 * 外键可以为空 * 一张表中可以有多个外键! 概念模型在数据库中成为表 数据库表中的多对一关系 ...

  4. 设计模式之第3章-模板方法模式(Java实现)

    设计模式之第3章-模板方法模式(Java实现) "那个,上次由于我老婆要给我做饭,所以就没有说完就走掉了...这个那个".这次和以前一样,先来开场福利(工厂方法模式已被作者踹下场) ...

  5. 59、小米电视安装apk(无u盘操作)

    第一步 打开电视或者盒子,找到应用商店 第二步 打开应用商店 第三步.打开应用商店后,找到用户,别切换到快捷安装 第四步.记住地址,使用在同一网络下的电脑打开此网页 第五步.页面效果如图 第六步.找到 ...

  6. 使用android-junit-report.jar导出单元测试报告

    Android在使用脚本编译和测试时,使用默认的testrunner不会输出文件类型的单元测试报告,每次只能分析logcat的无法直观的看到单元测试结果和报告,这给编写自动化脚本带来了不少麻烦,虽然可 ...

  7. php字符串 函数

    strtolower()//字符串转化小写的字母 $str="abcdEfG";$s=strtolower($str); 输出:abcdefg; strtoupper();字符串转 ...

  8. C# 序列化和反序列化 详解

    什么是序列化以及如何实现序列化? 如何将对象数据写入 XML 文件? 如何从 XML 文件读取对象数据? 什么是序列化以及如何实现序列化? 序列化是通过将对象转换为字节流,从而存储对象或将对象传输到内 ...

  9. Java 语言概述与开发环境(1)

    目录: 一.计算机语言的发展史 二.Java语言的简述 三.Java的特点 四.java语言的运行环境及环境变量的配置 五.Dos的常见命令 六.第一个java程序-HelloWord        ...

  10. aspx页面直接访问后台方法

    在方法上面机上[WebMethod]就可以直接请求该方法了.