贴模板,备忘。

模板1:

 #include<iostream>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<string.h>
using namespace std;
struct node {
int v,next;
}edge[];
int DFN[],LOW[];
int stack[],heads[],visit[],cnt,tot,index;
void add(int x,int y)
{
edge[++cnt].next=heads[x];
edge[cnt].v = y;
heads[x]=cnt;
return ;
}
void tarjan(int x)//代表第几个点在处理。递归的是点。
{
DFN[x]=LOW[x]=++tot;// 新进点的初始化。
stack[++index]=x;//进站
visit[x]=;//表示在栈里
for(int i=heads[x];i!=-;i=edge[i].next)
{
if(!DFN[edge[i].v]) {//如果没访问过
tarjan(edge[i].v);//往下进行延伸,开始递归
LOW[x]=min(LOW[x],LOW[edge[i].v]);//递归出来,比较谁是谁的儿子/父亲,就是树的对应关系,涉及到强连通分量子树最小根的事情。
}
else if(visit[edge[i].v ]){ //如果访问过,并且还在栈里。
LOW[x]=min(LOW[x],DFN[edge[i].v]);//比较谁是谁的儿子/父亲。就是链接对应关系
}
}
if(LOW[x]==DFN[x]) //发现是整个强连通分量子树里的最小根。
{
do{
printf("%d ",stack[index]);
visit[stack[index]]=;
index--;
}while(x!=stack[index+]);//出栈,并且输出。
printf("\n");
}
return ;
}
int main()
{
memset(heads,-,sizeof(heads));
int n,m;
scanf("%d%d",&n,&m);
int x,y;
for(int i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
}
for(int i=;i<=n;i++)
if(!DFN[i]) tarjan(i);//当这个点没有访问过,就从此点开始。防止图没走完
return ;
}

模板2:

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<stack>
#define maxn 1005
using namespace std;
struct Edge
{
int next;
int to;
}edge[maxn];
int head[maxn];
int cnt;
int step;
int dfn[maxn];//表示深搜的步数;
int low[maxn];//表示能追溯到最早的栈中节点的次序;
int sccno[maxn];//缩点数组,表示每个点对应的缩点值;
int scc_cnt;//强连通分量的个数;
void init()
{
cnt=;
step=;
memset(head,-,sizeof(head));
}
void add(int u,int v)
{
edge[cnt].next=head[u];
edge[cnt].to=v;
head[u]=cnt++;
}
vector<int>scc[maxn];//得出来的缩点,保存具体缩了那些点;
stack<int>s;
void dfs(int u)
{
dfn[u]=low[u]=++step;
s.push(u);
for(int i=head[u];i!=-;i=edge[i].next)
{
int v=edge[i].to;
if(!dfn[v])
{
dfs(v);
low[u]=min(low[u],low[v]);
}
else if(!sccno[v])
{
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u])
{
scc_cnt++;
scc[scc_cnt].clear();
while()
{
int x=s.top();
s.pop();
if(sccno[x]!=scc_cnt)
scc[scc_cnt].push_back(x);
sccno[x]=scc_cnt;
if(x==u)
break;
}
}
}
void tarjan(int n)
{
memset(sccno,,sizeof(sccno));
memset(dfn,,sizeof(dfn));
step=scc_cnt=;
for(int i=;i<=n;i++)
if(!dfn[i])dfs(i);
}
int main()
{
int n,m;
int x,y;
cin>>n>>m;
init();
while(m--)
{
cin>>x>>y;
add(x,y);
}
tarjan(n);
cout<<scc_cnt<<endl;
return ;
}

滚了。

强连通分量(Tarjan)模板的更多相关文章

  1. 强连通分量Tarjan模板

    #include<iostream> #include<stdio.h> #include<string.h> #include<stack> #inc ...

  2. 强连通分量(tarjan求强连通分量)

    双DFS方法就是正dfs扫一遍,然后将边反向dfs扫一遍.<挑战程序设计>上有说明. 双dfs代码: #include <iostream> #include <cstd ...

  3. 【Luogu P3387】缩点模板(强连通分量Tarjan&拓扑排序)

    Luogu P3387 强连通分量的定义如下: 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶 ...

  4. tarjan求强连通分量(模板)

    https://www.luogu.org/problem/P2341 #include<cstdio> #include<cstring> #include<algor ...

  5. 图的连通性:有向图强连通分量-Tarjan算法

    参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至 ...

  6. 求图的强连通分量--tarjan算法

    一:tarjan算法详解 ◦思想: ◦ ◦做一遍DFS,用dfn[i]表示编号为i的节点在DFS过程中的访问序号(也可以叫做开始时间)用low[i]表示i节点DFS过程中i的下方节点所能到达的开始时间 ...

  7. POJ1236_A - Network of Schools _强连通分量::Tarjan算法

    Time Limit: 1000MS   Memory Limit: 10000K Description A number of schools are connected to a compute ...

  8. 【有向图】强连通分量-Tarjan算法

    好久没写博客了(都怪作业太多,绝对不是我玩的太嗨了) 所以今天要写的是一个高大上的东西:强连通 首先,是一些强连通相关的定义 //来自度娘 1.强连通图(Strongly Connected Grap ...

  9. 有向图强连通分量 Tarjan算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

随机推荐

  1. HDU 6156 回文 数位DP(2017CCPC)

    Palindrome Function Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 256000/256000 K (Java/Ot ...

  2. Python中bisect的使用方法

    Python中列表(list)的实现其实是一个数组,当要查找某一个元素的时候时间复杂度是O(n),使用list.index()方法,但是随着数据量的上升,list.index()的性能也逐步下降,所以 ...

  3. bootstrap button

    样式修改 .sign-button, .sign-button:hover, .sign-button:focus, .sign-button:active, .sign-button:visited ...

  4. sedgewick增量序列的希尔排序

    #include<bits/stdc++.h> using namespace std; int s[3]={1,5,19}; void shellsort(int *a,int n){ ...

  5. android基础知识杂记

    Activity中获取视图组件对象:public View findViewById(@IdRes int id) 该方法以组件的资源ID为参数,返回一个视图对象View,需要强转成具体的视图类对象. ...

  6. leetcode 【 Plus One 】python 实现

    题目: Given a non-negative number represented as an array of digits, plus one to the number. The digit ...

  7. Bat windows 批处理 常用命令

    设置全屏: To make all bat files fullscreen: reg add HKCU\Console\ /v Fullscreen /t REG_DWORD /d /f To ma ...

  8. LeetCode668马在棋盘上的概率

    已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有一个 “马”(也译作 “骑士”)位于 (r, c)  ...

  9. 如何利用c++编写不能被继承、但可以在类外定义对象的类

    #include <iostream> #include<string> #include<map> #include<vector> #include ...

  10. PAT1026

    要获得一个C语言程序的运行时间,常用的方法是调用头文件time.h,其中提供了clock()函数,可以捕捉从程序开始运行到clock()被调用时所耗费的时间.这个时间单位是clock tick,即“时 ...