贴模板,备忘。

模板1:

 #include<iostream>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<string.h>
using namespace std;
struct node {
int v,next;
}edge[];
int DFN[],LOW[];
int stack[],heads[],visit[],cnt,tot,index;
void add(int x,int y)
{
edge[++cnt].next=heads[x];
edge[cnt].v = y;
heads[x]=cnt;
return ;
}
void tarjan(int x)//代表第几个点在处理。递归的是点。
{
DFN[x]=LOW[x]=++tot;// 新进点的初始化。
stack[++index]=x;//进站
visit[x]=;//表示在栈里
for(int i=heads[x];i!=-;i=edge[i].next)
{
if(!DFN[edge[i].v]) {//如果没访问过
tarjan(edge[i].v);//往下进行延伸,开始递归
LOW[x]=min(LOW[x],LOW[edge[i].v]);//递归出来,比较谁是谁的儿子/父亲,就是树的对应关系,涉及到强连通分量子树最小根的事情。
}
else if(visit[edge[i].v ]){ //如果访问过,并且还在栈里。
LOW[x]=min(LOW[x],DFN[edge[i].v]);//比较谁是谁的儿子/父亲。就是链接对应关系
}
}
if(LOW[x]==DFN[x]) //发现是整个强连通分量子树里的最小根。
{
do{
printf("%d ",stack[index]);
visit[stack[index]]=;
index--;
}while(x!=stack[index+]);//出栈,并且输出。
printf("\n");
}
return ;
}
int main()
{
memset(heads,-,sizeof(heads));
int n,m;
scanf("%d%d",&n,&m);
int x,y;
for(int i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
}
for(int i=;i<=n;i++)
if(!DFN[i]) tarjan(i);//当这个点没有访问过,就从此点开始。防止图没走完
return ;
}

模板2:

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<stack>
#define maxn 1005
using namespace std;
struct Edge
{
int next;
int to;
}edge[maxn];
int head[maxn];
int cnt;
int step;
int dfn[maxn];//表示深搜的步数;
int low[maxn];//表示能追溯到最早的栈中节点的次序;
int sccno[maxn];//缩点数组,表示每个点对应的缩点值;
int scc_cnt;//强连通分量的个数;
void init()
{
cnt=;
step=;
memset(head,-,sizeof(head));
}
void add(int u,int v)
{
edge[cnt].next=head[u];
edge[cnt].to=v;
head[u]=cnt++;
}
vector<int>scc[maxn];//得出来的缩点,保存具体缩了那些点;
stack<int>s;
void dfs(int u)
{
dfn[u]=low[u]=++step;
s.push(u);
for(int i=head[u];i!=-;i=edge[i].next)
{
int v=edge[i].to;
if(!dfn[v])
{
dfs(v);
low[u]=min(low[u],low[v]);
}
else if(!sccno[v])
{
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u])
{
scc_cnt++;
scc[scc_cnt].clear();
while()
{
int x=s.top();
s.pop();
if(sccno[x]!=scc_cnt)
scc[scc_cnt].push_back(x);
sccno[x]=scc_cnt;
if(x==u)
break;
}
}
}
void tarjan(int n)
{
memset(sccno,,sizeof(sccno));
memset(dfn,,sizeof(dfn));
step=scc_cnt=;
for(int i=;i<=n;i++)
if(!dfn[i])dfs(i);
}
int main()
{
int n,m;
int x,y;
cin>>n>>m;
init();
while(m--)
{
cin>>x>>y;
add(x,y);
}
tarjan(n);
cout<<scc_cnt<<endl;
return ;
}

滚了。

强连通分量(Tarjan)模板的更多相关文章

  1. 强连通分量Tarjan模板

    #include<iostream> #include<stdio.h> #include<string.h> #include<stack> #inc ...

  2. 强连通分量(tarjan求强连通分量)

    双DFS方法就是正dfs扫一遍,然后将边反向dfs扫一遍.<挑战程序设计>上有说明. 双dfs代码: #include <iostream> #include <cstd ...

  3. 【Luogu P3387】缩点模板(强连通分量Tarjan&拓扑排序)

    Luogu P3387 强连通分量的定义如下: 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶 ...

  4. tarjan求强连通分量(模板)

    https://www.luogu.org/problem/P2341 #include<cstdio> #include<cstring> #include<algor ...

  5. 图的连通性:有向图强连通分量-Tarjan算法

    参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至 ...

  6. 求图的强连通分量--tarjan算法

    一:tarjan算法详解 ◦思想: ◦ ◦做一遍DFS,用dfn[i]表示编号为i的节点在DFS过程中的访问序号(也可以叫做开始时间)用low[i]表示i节点DFS过程中i的下方节点所能到达的开始时间 ...

  7. POJ1236_A - Network of Schools _强连通分量::Tarjan算法

    Time Limit: 1000MS   Memory Limit: 10000K Description A number of schools are connected to a compute ...

  8. 【有向图】强连通分量-Tarjan算法

    好久没写博客了(都怪作业太多,绝对不是我玩的太嗨了) 所以今天要写的是一个高大上的东西:强连通 首先,是一些强连通相关的定义 //来自度娘 1.强连通图(Strongly Connected Grap ...

  9. 有向图强连通分量 Tarjan算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

随机推荐

  1. iOS SDK中使用NSXMLParser解析XML(iphone网络篇三)

    iOS SDK的NSXMLParser解析XML文档是事件驱动模式的,即采用SAX方式来解析XML格式文档.NSXMLParser在处理XML文档的过程中当遇到一些要素(元素.属性.CDATA块.评论 ...

  2. Linux安全层详解

    1 bastion(安全堡垒系统)通常配置两个服务: 1 服务定义系统的功能: 2 服务支持远程访问: 原则: 1 不需要某个软件卸载掉: 2 需要某个软件但不使用就不要激活: 为各个bastion系 ...

  3. [GDOI2016][树链剖分+主席树]疯狂动物城

    题面 Description Nick 是只在动物城以坑蒙拐骗为生的狐狸,儿时受到偏见的伤害,放弃了自己的理想.他被兔子 Judy 设下圈套,被迫与她合作查案,而卷入意想不到的阴谋,历尽艰险后成为搭档 ...

  4. Spark MLlib(下)--机器学习库SparkMLlib实战

    1.MLlib实例 1.1 聚类实例 1.1.1 算法说明 聚类(Cluster analysis)有时也被翻译为簇类,其核心任务是:将一组目标object划分为若干个簇,每个簇之间的object尽可 ...

  5. 4 Template层-CSRF

    1.csrf 全称Cross Site Request Forgery,跨站请求伪造 某些恶意网站上包含链接.表单按钮或者JavaScript,它们会利用登录过的用户在浏览器中的认证信息试图在你的网站 ...

  6. 使用code::blocks编译windows的dll链接库

    因为机子上没有安装Visual Studio,所以找到了一种通过code::blocks编译dll的方式,踩到的坑是code::blocks默认的compiler是32位的,这样编译出的dll也是32 ...

  7. Windows网络编程笔记5 -- 其他套接字

    包括红外线套接字(IrSock).IPX/SPX 套接字.NetBIOS 套接字.AppleTalk 套接字.ATM 套接字等.对这些套接字进行简单介绍. 第一.红外线套接字(I r S o c k) ...

  8. C# 中的 #region 和 #endregion 的作用

    C#中的 #region 和 #endregion 表示一块区域,这样在 Visual Studio 中可以将这块区域的代码折叠起来,便于查看. 虽然Visual Studio 也响应大括号的折叠,但 ...

  9. 区分 Cookie, LocalStorage 与 SessionStorage

    基本概念 Cookie Cookie 的大小限制为4KB左右,是网景公司的前雇员 Lou Montulli 在1993年3月的发明.它的主要用途有保存登录信息,比如你登录某个网站市场可以看到“记住密码 ...

  10. Linux下c++使用pthread库

    pthread 库是纯c库,没有类指针的概念,当想phread_create中传递类成员函数时,就会报错,这里针对这种情况,对线程创建做了必要封装,较为简单,继承类,实现run接口,然后使用start ...