滑动窗口限流

滑动窗口限流是一种常用的限流算法,通过维护一个固定大小的窗口,在单位时间内允许通过的请求次数不超过设定的阈值。具体来说,滑动窗口限流算法通常包括以下几个步骤:

  1. 初始化:设置窗口大小、请求次数阈值和时间间隔。
  2. 维护窗口:将请求按照时间顺序放入窗口中,并保持窗口内请求数量不超过阈值。
  3. 检查通过:每当有新的请求到达时,检查窗口内请求的总数是否超过阈值,如果未超过则允许通过,同时移除窗口最老的请求。
  4. 更新窗口:随着时间的推移,更新窗口内的请求情况,确保窗口内的请求符合限流条件。

滑动窗口限流算法可以有效控制系统的请求流量,避免系统被大量请求压垮。同时,由于其简单高效的特点,被广泛应用于接口限流、流量控制等场景中。需要注意的是,滑动窗口限流算法对于突发请求并不能完全解决问题,因此在实际应用中可能需要结合其他策略进行综合考虑。

基于redis-zset实现的滑动窗口算法流程

核心代码

/**
* 滑动窗口限流. 需要注意的是,我们要定期清楚过期的key,否则会导致内存泄漏,可以使用ZREMRANGEBYSCORE方法实现.
* @param key 限流的key
* @param timeWindow 单位时间,秒
* @param limit 窗口大小,单位时间最大容许的令牌数
* @param runnable 成功后的回调方法
*/
public void slidingWindow(String key, int timeWindow, int limit, Runnable runnable) {
Long currentTime = System.currentTimeMillis();
if (redisTemplate.hasKey(key)) {
Long intervalTime = timeWindow * 1000L;
Long from = currentTime - intervalTime;
Integer count = redisTemplate.opsForZSet().rangeByScore(key, from, currentTime).size();
if (count != null && count >= limit) {
throw new RedisLimitException("每" + timeWindow + "秒最多只能访问" + limit + "次.");
}
log.info("from key:{}~{},current count:{}", from, currentTime, count);
}
redisTemplate.opsForZSet().add(key, UUID.randomUUID().toString(), currentTime);
Optional.ofNullable(runnable).ifPresent(o -> o.run());
}

上面实现了一个基于时间戳为主要窗口依据的滑动窗口限流逻辑,由于zset的数据量会随着时间的流失而变大,所以我们需要定期再根据score来清理它。

/**
* 清期昨天的zset元素,这块应该写个任务调度,每天执行一次,清量需要的zset元素.
* @param key
*/
public void delByYesterday(String key) {
Instant currentInstant = Instant.now();
Instant oneDayAgoInstant = currentInstant.minusSeconds(86400);
long oneDayAgoTimeMillis = oneDayAgoInstant.toEpochMilli();
redisTemplate.opsForZSet().removeRangeByScore(key, 0, oneDayAgoTimeMillis); }

上面代码逻辑,事实上,我们可以通过其它语言去实现,比较通过go可以实现相关的逻辑,从新可以在MSE网关上实现限流功能。

算法~利用zset实现滑动窗口限流的更多相关文章

  1. ASP.NET Core中使用滑动窗口限流

    滑动窗口算法用于应对请求在时间周期中分布不均匀的情况,能够更精确的应对流量变化,比较著名的应用场景就是TCP协议的流量控制,不过今天要说的是服务限流场景中的应用. 算法原理 这里假设业务需要每秒钟限流 ...

  2. Redis的自增也能实现滑动窗口限流?

    限流是大家开发之路上一定会遇到的需求.比如:限制一定时间内,接口请求请求频率:一定时间内用户发言.评论次数等等,类似于滑动窗口算法.这里分享一份拿来即用的代码,一起看看如何利用常见的 Redis 实现 ...

  3. ASP.NET Core中使用固定窗口限流

    算法原理 固定窗口算法又称计数器算法,是一种简单的限流算法.在单位时间内设定一个阈值和一个计数值,每收到一个请求则计数值加一,如果计数值超过阈值则触发限流,如果达不到则请求正常处理,进入下一个单位时间 ...

  4. 算法与数据结构基础 - 滑动窗口(Sliding Window)

    滑动窗口基础 滑动窗口常用来解决求字符串子串问题,借助map和计数器,其能在O(n)时间复杂度求子串问题.滑动窗口和双指针(Two pointers)有些类似,可以理解为往同一个方向走的双指针.常用滑 ...

  5. SpringCloud(六)之 网关概念、Zuul项目搭建-(利用Zuul 实现鉴权和限流实战)

    一.网关概念 1.什么是路由网关 网关是系统的唯一对外的入口,介于客户端和服务器端之间的中间层,处理非业务功能 提供路由请求.鉴权.监控.缓存.限流等功能.它将"1对N"问题转换成 ...

  6. Sentinel源码解析三(滑动窗口流量统计)

    前言 Sentinel的核心功能之一是流量统计,例如我们常用的指标QPS,当前线程数等.上一篇文章中我们已经大致提到了提供数据统计功能的Slot(StatisticSlot),StatisticSlo ...

  7. .NET服务治理之限流中间件-FireflySoft.RateLimit

    概述 FireflySoft.RateLimit自2021年1月发布第一个版本以来,经历了多次升级迭代,目前已经十分稳定,被很多开发者应用到了生产系统中,最新发布的版本是3.0.0. Github:h ...

  8. 基于令牌桶算法实现的SpringBoot分布式无锁限流插件

    本文档不会是最新的,最新的请看Github! 1.简介 基于令牌桶算法和漏桶算法实现的纳秒级分布式无锁限流插件,完美嵌入SpringBoot.SpringCloud应用,支持接口限流.方法限流.系统限 ...

  9. tcp协议头窗口,滑动窗口,流控制,拥塞控制关系

    参考文章 TCP 的那些事儿(下) http://coolshell.cn/articles/11609.html tcp/ip详解--拥塞控制 & 慢启动 快恢复 拥塞避免 http://b ...

  10. 【Distributed】限流技巧

    一.概述 1.1 高并发服务限流特技 1.2 为什么要互联网项目要限流 1.3 高并发限流解决方案 二.限流算法 2.1 计数器 2.2 滑动窗口计数 2.3 令牌桶算法 使用RateLimiter实 ...

随机推荐

  1. nginx进阶-3(32-34天)学习笔记

    nginx进阶-3(33-34天)学习笔记 知识回顾 1. nginx部署单机网站 2.nginx部署多个网站 3.nginx访问方式 4.nginx 安全 5.nginx加密访问 实战 00---n ...

  2. 一行代码 python 证件照换底色

    安装所需模块 pip install OpenCV-python pip install cvzone pip install mediapipe 代码 import cv2 import cvzon ...

  3. Ubuntu系统部署springcloud+nacos遇到的问题。

    1,部署上的jar包运行正常,但是通过浏览器不能访问,telnet +IP+端口连接不通.小皮面板访问后台接口也是不通但是小皮面板可以通过浏览器访问.具体问题暂未解决. 2,改用docker部署,将j ...

  4. Java学习路线之redis

    1.redis 大数据时代三V:海量Volume.多样Variety.实时Velocity 大数据时代三高:高并发.高可用(无限套娃+彼此监控).高性能 - Redis(Remote Dictiona ...

  5. 攻防世界 debug

    题目 分析过程 丢到PE里面 一开始,我看到下面的脱壳提示,以为是我没见过的壳,下载了相关工具脱壳--发现脱了后又出现没见过的脱壳提示,根据提示脱壳弄出来的东西怪怪的 卡题,查了资料 学到一个新知识点 ...

  6. Grafana 系列-统一展示-5-AWS Cloudwatch 仪表板

    系列文章 Grafana 系列文章 ️强烈推荐 强烈推荐使用 GitHub 上的 monitoringartist/grafana-aws-cloudwatch-dashboards 仪表板.该 re ...

  7. ContOS7搭建RAID-5磁盘阵列

    RAID5:分布式奇偶校验的独立磁盘结构 RAID5就是raid0和RAID1的一种折中,既提升了磁盘读写能力,又有一定的容错能力,成本也低: 实验开始: 1.挂载四块5G硬盘 2.进行分区:fdis ...

  8. 抓包整理————wireshark DNS 演练[三]

    前言 简单整理一些wireshark dns 演练. 正文 简单介绍一下什么是dns. 这个其实可以百度一下哈,其实就是将域名转换为ip. 然后查询过程是这样的: 根域名服务器 权威服务器 dns 被 ...

  9. mysql 重新整理——逻辑架构[二]

    前言 在此简洁逻辑架构,mysql的基础逻辑架构其实和sql server很像的. 正文 首先是客户端,发起了连接. 然后呢连接池后那一块,就是有分析器的那一块,那一块是干啥的呢. 其实我们写的语句呢 ...

  10. Effective Python:简介

    作者:布雷特·斯拉特金 本书的大部分范例代码都遵循Python 3.7版本的语法规范,Python 3.7发布于2018年6月.另外,书里还会给出一些采用Python 3.8语法规范所写的范例,让大家 ...