网络安全—PKI公钥基础设施
前提知识
散列函数
散列也可以叫哈希函数,MD5、SHA-1、SHA-2、、(不管叫啥,都记得是同一个东西就行)
散列的特点:
- 固定大小
不管你进行散列的文件大小有多大,最后输出的都是一个固定长度的散列值 - 雪崩效应
这个不要误解是缺点,这个雪崩其实是优点,意思是在你做散列之前的那个值如果其中有一个比特改变了,那出来的散列值将会与没动之前的值大大不同。这就叫做雪崩效应。这就很好的避免了别破解的手段,只能通过碰撞手段,在最短时间内找到不同的文件能够输出一样的散列值。 - 单向
散列函数就是一个单向函数。是一种只能由输入推断输出但不能由输出逆推输入的函数,即使攻击者知道了加密算法和密文,他们也很难解密出明文。 - 冲突避免
意思是很难在一个很短的时间内找到另一个散列值和现在输出的散列值一样的文件,就好比我们现在的指纹,短时间内很难找到另外一个人的指纹和我的指纹一样,冲突就避免了。
非对称加密
熟悉的 公钥加密,自己生成一对公钥私钥,公钥可以发布出去谁都可以知道,但是私钥只有自己知道。
- 加解密
在加解密中的公私钥中,是使用公钥加密私钥解密,私钥加密的公钥解不开,这是在加解密中是这样的。- 签名
在签名中的公私钥,是私钥签名公钥验证,公钥无法签名,只有私钥能验证持有者身份,和加解密是相反的,首先算法上就是不一样的。- 通常加解密的公私钥和签名的公私钥不一样,但是理论上是可以一样的(如果是我,我肯定两对钥匙不同,不然有一个私钥泄露了那也只崩一边不会两边都崩)
签名算法只是算法不同性导致他是使用私钥签名,公钥验证,有的人会觉得签名怎么看起来一点都不安全,其实恰恰相反,因为我们签名就是用来给别人验证的,安全性是建立在你私钥保管好了,没有人能够伪造你的签名,因为不知道你的私钥。
小结:由于这种非对称加密的出现虽然一开始觉得没有对称美,但是后来发现非对称加密才是最优雅的安全系数提升了很多的加密方式,用久了也会觉得非对称加密才是真正的对称美,实在是太优雅了!
但是由于他的缺点是加密速度非常慢,密文会变长,既然如此,那就正好了,我们散列出来的值就很小,这就是后面的数字签名,我们对散列值进行签名就是数字签名,数字签名由于是非对称的签名,签名是私钥签,公钥验证,所以其他人可以通过公钥来验证身份。
PGP就是结合了对称和非对称,就是使用随机产生的对称会话密钥加密,将会话密钥使用非对称加密->即使用私钥进行加密,那这样只有持有我的公钥的人可以拿出这个会话密钥进行解密这份数据包。很优雅的解决了非对称加密速度慢的问题。
数字签名
主要是关注图中的数字签名。
- 数字签名流程
原文件进行散列函数得到唯一的散列值
↓
散列值使用发送者的私钥进行签名
↓
发送者的数字签名就出来了(无法伪造)
↓
接收方使用发送者的公钥进行验证签名,即得到散列值
↓
将得到的文件做一个散列函数得到散列值,
比对一下两个散列值是否相同即完成了数字签名验证的过程了。
PKI
先明确一下我们现在赤裸裸的进行交换公钥交换信息的话会出现什么问题
- 双方翻脸不认人,某一方可以说我的收到的信息不是长这样或者我发过去的时候不是这么写的,中间肯定有黑客截获了直接把我所有信息都替换掉了?
- 当出现上面这种争执的时候就可能双方给得打官司了,谁也不服谁。
- 你怎么知道交换公钥的时候,那个公钥是我的呢?万一早就在公钥交换的过程就被攻击了,那我们以前交流的信息其实就没有一条是可信任的了。
受信任的人
之前看到过一个视频讲了一个例子十分好,在我们去到新公司上班的时候如何快速和其他人打好关系建立信任,那就是需要一位德高望重的老员工带着我们去一个一个的认识和介绍。
OK,这一点的提出貌似有了点头绪,那我们为了避免交换公钥后出现的各种不安全问题,就需要一个可信任的第三方机构。那么这个机构就是我们的RA注册机构、CA证书颁发机构等等,多个机构和设施结合就是我们的PKI。
PKI最核心的就是CA,颁发证书的机构,他颁发的证书可信的是很高的,也就是说大家都相信他颁发的证书,都去他那里注册,然后这样大家就可以通过这个"老员工"相互认识和通信了,可信度也高。
RA注册
注册机构,首先我们要知道RA是类似于我们去银行前台办理一系列的手续,前台就是我们的RA,所以说有时候也赖不得说线下办理麻烦,不能搞个线上吗?其实线下是为了保证你的业务安全性。
回到正题,RA注册就是一个注册你身份到PKI这个机构里面,让你可以和其他人一起玩,一起交流沟通,注册完成后就能够去CA颁发一个证书给你了。
注册一般最基本的就是提交你的公钥,你的ID名字、有效期等等,最重要的是你的公钥,线下提交的总不能被黑客劫持到了吧?!当然了,有些地区是支持你线上办理的,有一说一,你都这么谨慎去办理CA了,还不如线下来的安全,还敢线上办理?(没有贬低线上办理的意思)
(关于注册的更多细节我就不深究了)
有时候还有需要你提交你办理的业务也就是说待会颁发的证书是什么类型的。
CA颁发
证书颁发机构。
明确一个点:CA证书服务器也可以类比成用户,他也是有私钥和公钥的,所以说我们是相信他的私钥不会丢失且能够保管好我们的信息的这么一个机构。
这个就是等你在前台办完手续后,通过资格认证后,我们的CA证书机构就会颁发一个属于你自己的证书,然后你就可以通过这个证书来和其他人做一个安全的公钥交换。
目前还有点懵,但是我们需要知道的是,我们公钥交换不安全,需要第三方给我们一个可靠的安全公钥交换,但是和我们预期的不同的是,不是机构带着我们去做公钥交换,而是给你一个可以提供安全公钥交换的证书,交换证书就能够完成安全的公钥交换。下面开始解析具体细节。
- 首先我们的公钥和其他信息交给了CA,然后CA就开始生成属于我的证书
CA证书里面最基本的内容:ID名(你自己的)、你的公钥、证书服务器的签名、有效期等等。- 这个签名很重要,签名是证书服务器的私钥签名的。需要证书服务器的公钥验证,巧了这不,我来到你家门办理业务,那么这个公钥待会肯定会给到我们,不用担心,因为他的公钥是给你一个根证书,里面有他的CA公钥
- 根证书:存着CA的个人信息、CA的公钥、CA的服务器签名。
到这的时候很熟悉,一股Kerberos的味道,用根证书解开别人的证书里面的CA服务器签名得到哈希散列值,然后用对方证书里面的东西做一个哈希散列值一对比两个一不一样就代表是否是成功且安全的交换了公钥了。
- 我们拿到证书了,就可以愉快的和其他人也有该机构颁发的证书进行安全的公钥交换了。
IKE数字签名认证(交换证书)
其实上面PKI已经完成工作了,也就注册申请证书了,如果你信任他,就拿着他颁发下来的证书和其他人进行公钥交换就行,如果需要深究那就需要理解为什么这么做还有为什么就可以实现安全的交换。
- 如下图所示
IKE(Internet Key Exchange)中数字签名认证通常涉及交换数字证书的过程。
多么优雅的一个图片,签名、根证书、交换等等一系列操作组合起来太优雅了!
回到正题,我们现在不用CA颁发的证书的话面临的问题就是之前提到过的,公钥交换不安全,由于可能被人截获替换了公钥,那么我们可能接下来的对话都被黑客操控者。
- 假设我们注册完成了,OK捋一下我们都有些什么
CA根证书 == CA个人信息、CA公钥、CA证书服务器签名、有效时间… - 我们要和对方交换证书的流程(使用IKE数字签名)
图中从左往右数
第一个包:我们将以后交流信息要使用到的散列函数和其他对方要知道的信息做一个散列哈希值,然后用自己的私钥进行数字签名。
第二个包:我的证书,是CA权威机构颁发下来的证书。
第三个包:我的个人信息(你的让人家知道你是谁)
第四个包:Header,其他关键信息 - 接收方接收到证书后如何操作得到我的公钥呢?
下面以接受方视角解释
首先接收方一定有CA根证书
↓
拿到数据包后第一件事情可以拿出根证书里面的CA公钥,将对方发送过来的证书里面的CA服务器的签名使用CA公钥进行验证(签名肯定是CA使用私钥给对方的信息签名的),验证得到一个散列哈希值
↓
取出对方证书里面的除了刚刚的签名,其他信息做一个散列哈希值。然后将之前验证得到的散列哈希值和现在这个散列哈希做一个对比就知道是否真的是对方发来的且这个这证书是可信的。
↓
这时候其实还要继续,我们通过对方的证书拿到了对方的公钥,然后就可以通过对方的公钥对那个第一个包的数字签名进行验证,然后得到哈希散列值,同理将对方要告诉我的其他信息也做一个散列哈希值,二者进行对比就知道公钥真真正正是对方的了。
开始通过问题来说明这个优雅的IKE数字签名
证书发的太多会不会造成威胁?
不会,证书给谁发都行,因为你去注册后,根证书你自己已经拿到了,根证书这玩意你总不能会说伪造吧?根证书里面有CA公钥,通过CA公钥能够验证别人发过来的证书里面的机构给他的CA服务器签名得到散列哈希值,然后其他信息做一个散列哈希函数得到的值和验证签名出来的一不一样就知道证书是否有效(当然还有检查有效时间)那你还是没解决掉别人盗用我证书的威胁啊?
别担心,不要忘记了还有一个数字签名,协商好的算法能不能验证出来就看刚刚解出来的对方申请下来的CA颁发的证书里面的公钥是不是对方的,这就无法盗用证书了。那万一别人直接将整个证书劫持了,使用了攻击者自己申请好的证书发给我怎么办,我岂不时直接就啥都不清楚的被欺骗了?
别忘记了IKE数字签名流程里面还有你的ID号明文形式发送过去,这玩意要是篡改了,你证书总不能窜改吧,证书里面不是还有ID可以知道是不是对方吗?这两一对比你不就知道是不是对方了么。这就完美打破了你的这个"骇客"想法了。万一证书里面的ID和我另一个人长得很像那我岂不是也会被骗到?
这个确实可以有一定概率骗到审核的人。
不过这就是你的不对了,不能赖别人,别人名字没有错,错的是你,你自己就要承担责任了,因为发送方没有任何过失,你自己这么不谨慎怪不了谁的。最后还有一个问题不知道解决了没,那就是双方是否还可以翻脸不认人?
有了第三方权威机构后,除非你买通了权威机构,这也是不道德的行为,所以基本上你翻脸不认人是不可能的,因为你要说公钥不是对方造成我信息泄露的话,那赖不得人家,这可是安全的公钥交换,自己没有细心的检查不能怪别人。
私钥丢了呢?那也是你自己的问题,你泄露出去的,对方完全没有责任,私钥只有你自己的知道啊。我们没有协商任何的共享密钥。
密钥管理
密钥产生、更新、备份、恢复等等
(这里本人没有且不打算深入探究)
总结:
PKI就是帮助我们完成一个安全的公钥交换问题,解决了第三方直接伪造公钥的问题仅此而已,后面的你交流什么信息发送什么数据PKI不管的,给你颁发证书,用证书实现安全的公钥交换就行了。
网络安全—PKI公钥基础设施的更多相关文章
- PKI公钥基础设施简介
PKI(Public Key Infrastructure)公钥基础设施是提供公钥加密和数字签名服务的系统或平台,目的是为了管理密钥和证书.一个机构通过采用PKI 框架管理密钥和证书可以建立一个安全的 ...
- (16) Cloudflare pki公钥基础设施
该工具组共有8个工具 1.cfssl 常用的可用指令: sign signs a certificate bundle build a certificate bundle genkey genera ...
- PKI(公钥基础设施)基础知识笔记
数字签名 数字签名(又称公钥数字签名.电子签章)是一种类似写在纸上的普通的物理签名,可是使用了公钥加密领域的技术实现.用于鉴别数字信息的方法. 一套数字签名通常定义两种互补的运算.一个用于签名,还有一 ...
- [转帖]公钥基础设施(PKI)/CFSSL证书生成工具的使用
公钥基础设施(PKI)/CFSSL证书生成工具的使用 weilovepan520关注1人评论84344人阅读2018-05-26 12:22:20 https://blog.51cto.com/liu ...
- 公钥基础设施PKI利用SRAM物理不可克隆函数PUF实现芯片标识唯一性
下面给出PKI利用SRAM PUF实现芯片标识唯一性的方法思路: PKI利用SRAM PUF实现芯片标识唯一性的方式 (1)使用PUF原因 物理上不可克隆函数利用硅制造的自然变化来产生每个芯片统计上唯 ...
- 公钥基础设施体系和EJBCA的一些概念
最近一段时间的在公司做的事情是: 1. 为公司的一些线上系统启用https(使用nginx反向代理的方式来实现,之前的应用无需做改动) 2.为符合规则的用户颁发数字证书(自建CA来实现,目前的用途是给 ...
- PKI公钥处理思路
背景: 在使用任何基于RSA服务之前,一个实体要真实可靠的获取其他实体的公钥. 1,一个可以确认公钥身份的方案:[离线确认] 主:B做同样的事情得到A的公钥. 但是这种方法扩展性差,不可行. ...
- 对于PKI(公钥基础结构)及证书服务的通俗理解
对于PKI及证书服务的这些概念,相信初学者会有许多迷惑的地方,那是因为其中的某些关键概念没有理解清楚,我力争以通俗易懂的方式给初学者一些启示,也给以后自己忘了的时候一个参考:) ! 参考资料:http ...
- [na]PKI公钥处理思路
前提申明: 在使用任何基于RSA服务之前,一个实体要真实可靠的获取其他实体的公钥. 1,一个可以确认公钥身份的方案:[离线确认] 主:B做同样的事情得到A的公钥. 但是这种方法扩展性差,不可行. 2, ...
- SSL安全证书-概念解析
一.关于证书 数字证书是一种认证机制.简单点说,它代表了一种由权威机构颁发授权的安全标志. 由来 在以前,传统网站采用HTTP协议进行数据传输,所有的数据几乎都用的明文,很容易发生隐私泄露.为了解决安 ...
随机推荐
- MyBatis-Plus 代码生成(旧)
MyBatis-Plus官网的代码生成器配置不是特别全,在此整理了较为完整的配置,供自己和大家查阅学习. // 代码生成器 AutoGenerator mpg = new AutoGenerator( ...
- HarmonyOS账号服务,畅行鸿蒙生态所有应用与服务
账号对于用户来说并不陌生,在购买新设备或者使用新应用的时候,用户常常会被引导注册或者登录账号,账号就是用户在这些设备或应用内的通行证.根据华为上半年的一项统计,整体上中国网民人均下载App量在68个, ...
- openGauss/MogDB调用C FUNCTION
openGauss/MogDB 调用 C FUNCTION 摘要 之前写过一篇关于postgresql 自定义函数实现,通过 contrib 模块进行扩展的帖子,今天和恩墨工程师进行了一些交流,在 M ...
- 【中秋国庆不断更】XML在HarmonyOS中的生成,解析与转换(下)
一.XML解析 对于以XML作为载体传递的数据,实际使用中需要对相关的节点进行解析,一般包括解析XML标签和标签值.解析XML属性和属性值.解析XML事件类型和元素深度三类场景. XML模块提供Xml ...
- signalr 应用于微信小程序(一)
前言 在2017年基于signalr 和微信小程序 写的脚本. 正文 先安装signalr: 1.安装singalr,用nutget就行,用这个包管理就行. 2.使用singalr 3.根据singa ...
- https http2 http3
HTTP 1.1 对比 1.0,HTTP 1.1 主要区别主要体现在: 缓存处理:在 HTTP 1.0 中主要使用 header 里的 If-Modified-Since,Expires 来做为缓存判 ...
- canvas生成表单海报
项目需要输入表单生成图片,可以使用下面方法生成海报,保存到手机,话不多说,上代码吧 HTML部分代码 <div class="dd"> <img src=&quo ...
- mockjs 模拟实现增删改查
/*mUtils.js用于解析get请求的参数*/ export const param2Obj = url => { const search = url.split('?')[1] if ( ...
- 力扣1083(MySQL)-销售分析Ⅲ(简单)
题目: Table: Product Table: Sales 编写一个SQL查询,报告2019年春季才售出的产品.即仅在2019-01-01至2019-03-31(含)之间出售的商品. 以 任意顺序 ...
- HarmonyOS NEXT应用开发案例——全屏登录页面
全屏登录页面 介绍 本例介绍各种应用登录页面. 全屏登录页面:在主页面点击跳转到全屏登录页后,显示全屏模态页面,全屏模态页面从下方滑出并覆盖整个屏幕,模态页面内容自定义,此处分为默认一键登录方式和其他 ...