本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问。

学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度也更复杂。在这个专栏里,小彭与你分享每场 LeetCode 周赛的解题报告,一起体会上分之旅。

本文是 LeetCode 上分之旅系列的第 43 篇文章,往期回顾请移步到文章末尾~

LeetCode 双周赛 112

T1. 判断通过操作能否让字符串相等 I(Easy)

  • 标签:模拟

T2. 判断通过操作能否让字符串相等 II(Medium)

  • 标签:模拟、计数、排序

T3. 几乎唯一子数组的最大和(Medium)

  • 标签:滑动窗口、计数

T4. 统计一个字符串的 k 子序列美丽值最大的数目(Hard)

  • 标签:枚举、贪心、排序、乘法原理、组合数


T1. 判断通过操作能否让字符串相等 I(Easy)

https://leetcode.cn/problems/check-if-strings-can-be-made-equal-with-operations-i/

题解(模拟)

因为只能交换距离偶数倍的位置,因此相当于比较两个字符串相同奇偶性下标上的元素是否相等。

  • 写法 1:基于散列表
class Solution {
fun canBeEqual(s1: String, s2: String): Boolean {
return setOf(s1[0], s1[2]) == setOf(s2[0], s2[2]) && setOf(s1[1], s1[3]) == setOf(s2[1], s2[3])
}
}
  • 写法 2:基于字符串
class Solution:
def checkStrings(self, s1: str, s2: str) -> bool:
return sorted(s1[0::2]) == sorted(s2[0::2]) and sorted(s1[1::2]) == sorted(s2[1::2])

复杂度分析:

  • 时间复杂度:$O(1)$
  • 空间复杂度:$O(1)$

T2. 判断通过操作能否让字符串相等 II(Medium)

https://leetcode.cn/problems/check-if-strings-can-be-made-equal-with-operations-ii/

题解(模拟)

同上,分别统计奇偶下标上的元素个数是否相等。

写法 1:基于计数;

class Solution {
fun checkStrings(s1: String, s2: String): Boolean {
val U = 26
val cnts = Array(2) { IntArray(U) }
for ((i, e) in s1.withIndex()) {
cnts[i % 2][e - 'a']++
}
for ((i, e) in s2.withIndex()) {
cnts[i % 2][e - 'a']--
}
return cnts[0].all {it == 0} && cnts[1].all {it == 0}
}
}

复杂度分析:

  • 时间复杂度:$O(n + U)$ 线性遍历时间与计数时间;
  • 空间复杂度:$O(U)$ 计数数组空间。

写法 2:基于字符串:

class Solution:
def checkStrings(self, s: str, t: str) -> bool:
return all(sorted(s[p::2]) == sorted(t[p::2]) for p in range(2))

复杂度分析:

  • 时间复杂度:$O(nlgn)$ 排序时间;
  • 空间复杂度:$O(n)$ 构造字符串空间。

T3. 几乎唯一子数组的最大和(Medium)

https://leetcode.cn/problems/maximum-sum-of-almost-unique-subarray/

题解(滑动窗口 + 计数)

滑动窗口模板题,维护窗口中不同元素的种类数和总和:

class Solution {
fun maxSum(nums: List<Int>, m: Int, k: Int): Long {
var cnts = HashMap<Int, Int>()
var type = 0
var sum = 0L
var ret = 0L
for (j in nums.indices) {
// 滑入
cnts[nums[j]] = cnts.getOrDefault(nums[j], 0) + 1
if (1 == cnts[nums[j]]!!) type++
sum += nums[j]
// 滑出
if (j >= k) {
val i = j - k
cnts[nums[i]] = cnts[nums[i]]!! - 1
if (0 == cnts[nums[i]]) type --
sum -= nums[i]
}
// 记录
if (j >= k - 1 && type >= m) {
ret = max(ret, sum)
}
}
return ret
}
}

复杂度分析:

  • 时间复杂度:$O(n)$ 线性遍历时间;
  • 空间复杂度:$O(n)$ 散列表空间。

T4. 统计一个字符串的 k 子序列美丽值最大的数目(Hard)

https://leetcode.cn/problems/count-k-subsequences-of-a-string-with-maximum-beauty/

问题分析

  • 问题目标: 求所有长为 $k$ 的子序列中美丽值是最大值的子序列数目;
  • 问题要件: 先计算长为 $k$ 的子序列的最大美丽值,再计算满足美丽值是最大值的子序列方案数;
  • 关键信息 1: 子序列要选择不重复的字母;
  • 关键信息 2: 同一个字符在原字符串中的不同位置可以构造不同子序列;
  • 核心变量: $f(c)$ 是 字符 $c$ 的出现次数,美丽值是子序列中字符的 $f(c)$ 之和;
  • 边界情况: 既然子序列要选择不重复的字母,那么存在边界情况,当 $k$ > 字符串的字符种类数:那么一定不能构造 $k$ 子序列,返回 $0$。

题解一(暴力枚举 + 乘法原理)

最简单的做法,我们可以枚举所有可能的 $k$ 子序列,并记录出现最大美丽值的方案数,怎么实现呢?

  • 方法 1 - 考虑到子序列需要保留原字符串的顺序,直接的想法是枚举字符串中的每个下标 $s[i]$ 选和不选,但是时间复杂度是 $O(2^n)$ 显然不成立;
  • 方法 2 - 事实上我们不需要从原字符串的角度枚举,而是可以从字符集的角度枚举,那样时间复杂度就可以用乘法原理来优化。比如说 a 的出现次数是 $2$,而 b 的出现次数是 $3$,那么所有 ab 可以构造的子序列方案数就是 2 * 3 = 6

那么,方法会不会超时呢,我们来简单分析下:

由于字符集的大小 $U$ 最多只有 $26$ 个,那么子序列的方案数最多有 $C_{26}^k$ 个,而由于 $k$ 大于 $U$ 的方案是不存在的,因此合法的方案数最多只有 $C_{U}^{\frac{U}{2}} = C_{26}^{13} = 10400600$ 约等于 $10^7$。只要我们保证求解每个子问题的时间复杂度是 $O(1)$ 的话是可以通过的。

枚举实现:

class Solution {
fun countKSubsequencesWithMaxBeauty(s: String, k: Int): Int {
val MOD = 1000000007
// 计数
val cnts = HashMap<Char, Int>()
for (e in s) {
cnts[e] = cnts.getOrDefault(e, 0) + 1
}
val m = cnts.size
if (m < k) return 0 // 特判
// 枚举子序列
val keys = cnts.toList()
var maxCount = 0L
var maxF = 0
// 回溯
fun count(index: Int, size: Int, curF: Int, curCount: Long) {
// 终止条件
if (size == k) {
if (curF > maxF) {
maxF = curF
maxCount = curCount // 更新最大美丽值方案数
} else if (curF == maxF) {
maxCount = (maxCount + curCount) % MOD // 增加方案数
}
return
}
if (size + m - index < k) return // 剪枝(长度不够)
for (i in index until m) {
val (c, cnt) = keys[i]
count(i + 1, size + 1, curF + cnt, curCount * cnt % MOD /* 乘法原理 */)
}
}
count(0, 0, 0, 1)
return maxCount.toInt()
}
}

复杂度分析:

  • 时间复杂度:$O(C_m^k)$ 其中 $m$ 为字符种类 ;
  • 空间复杂度:$O(m)$ 散列表空间与递归栈空间。

题解二(排序 + 贪心 + 乘法原理)

考虑 $k = 1$ 的边界情况:

显然需要选择 $f(c)$ 值最大的 $1$ 个字母,如果存在 $m$ 个字母的 $f(c)$ 等于最大值,那么存在 $C_m^1 = m$ 种方案。这说明我们没必要枚举所有字母的子序列: 由于子序列中的字符是不重复的,因此 $k$ 子序列必然要选择 $f(c)$ 值最大的 $k$ 个字母,我们可以将字母按照 $f(c)$ 倒序排序,优先取 $f(c)$ 更大的字母。

具体实现上:

我们将字母按照 $f(c)$ 分桶排序,如果桶内字母数量 $K$ 小于等于 $k$,那么桶内元素都需要选择,否则还要计算桶内元素选择 $k$ 个的方案数:

  • 选择桶内所有元素,方案数为 $cnt^K$
  • 选择桶内部分元素,方案数为 $C_K^k · cnt^k$

其中涉及到幂运算,本质是倍增思想:

// 快速幂 x^n
private fun powM(a: Int, b: Int, mod: Int) : Long {
var x = a.toLong()
var n = b.toLong()
var ret = 1L
while (n > 0L) {
if (n % 2 == 1L) ret = ret * x % mod
x = x * x % mod
n /= 2
}
return ret
}

其中涉及到 组合数

  • 计算式:
// 组合数计算公式 O(k)
private fun comb(n: Int, k: Int, mod: Int) : Int {
var ret = 1L
for (i in 1 .. k) {
ret = ret * (n - i + 1) / i % mod
}
return ret.toInt()
}
  • 递推式(杨辉三角):
// 递归 O(n^2)
private fun comb(n: Int, k: Int, mod: Int) : Int {
if (n == k) {
return 1
} else if (k == 1) {
return n
} else {
return (comb(n - 1, k - 1, mod) + comb(n - 1, k, mod)) % mod
}
} // 迭代 O(n^2)
private fun comb(n: Int, k: Int, mod: Int) : Int {
val c = Array(n + 1) { IntArray(n + 1) }
for (i in 1 .. n) {
c[i][0] = 1
c[i][i] = 1
for (j in 1 until i) {
c[i][j] = (c[i-1][j] + c[i-1][j-1]) % mod
}
}
return c[n][k]
}

// 组合数计算公式
private fun comb(n: Long, k: Long, mod: Int) : Int {
var n = n
var ret = 1L
for (i in 1 .. k) {
ret = ret * n-- / i % mod
}
return ret.toInt()
} // 卢卡斯定理
fun Lucas(n: Long, k: Long, mod: Int) : Long {
if (k == 0L) return 1L;
return (comb(n % mod, k % mod, mod) * Lucas(n / mod, k / mod, mod)) % mod;
}

完整代码:

class Solution {
fun countKSubsequencesWithMaxBeauty(s: String, k: Int): Int {
val MOD = 1000000007
// 计数
val cnts = HashMap<Char, Int>()
var maxCnt = 0
for (e in s) {
cnts[e] = cnts.getOrDefault(e, 0) + 1
maxCnt = max(maxCnt, cnts[e]!!)
}
val m = cnts.size
if (m < k) return 0 // 特判
// 有序集合
val map = TreeMap<Int, Int>() { c1, c2 ->
c2 - c1
}
// 二次频率
for ((_, c) in cnts) {
map[c] = map.getOrDefault(c, 0) + 1
}
val cntCnts = map.toList()
// println(cntCnts.joinToString())
// 构造方案
var ret = 1L
var leftK = k
for ((cnt, K) in cntCnts) {
if (K > leftK) {
ret = ret * powM(cnt, leftK, MOD) * comb(K, leftK, MOD) % MOD
} else {
ret = ret * powM(cnt, K, MOD) % MOD
}
leftK -= K
if (leftK <= 0) break
}
return ret.toInt()
} // 组合数计算公式 C_n^k
private fun comb(n: Int, k: Int, mod: Int) : Int {
if (n == k) {
return 1
} else if (k == 1) {
return n
} else {
return (comb(n - 1, k - 1, mod) + comb(n - 1, k, mod)) % mod
}
} // 快速幂 x^n
private fun powM(x_: Int, n_: Int, mod: Int) : Long {
var x = x_.toLong()
var n = n_.toLong()
var ret = 1L
while (n > 0L) {
if (n % 2 == 1L) ret = ret * x % mod
x = x * x % mod
n /= 2
}
return ret
}
}

Python 中组合数和幂运算可以很方便地使用库函数:

class Solution:
def countKSubsequencesWithMaxBeauty(self, s: str, k: int) -> int:
MOD = 10 ** 9 + 7
ans = 1
cnt = Counter(Counter(s).values())
for c, num in sorted(cnt.items(), reverse=True): # 二次计数
if num >= k:
return ans * pow(c, k, MOD) * comb(num, k) % MOD
ans *= pow(c, num, MOD)
k -= num
return 0

复杂度分析:

  • 时间复杂度:$O(n + m)$ 主要时间在枚举字符串的环节;
  • 空间复杂度:$O(m)$ 散列表空间。

推荐阅读

LeetCode 上分之旅系列往期回顾:

️ 永远相信美好的事情即将发生,欢迎加入小彭的 Android 交流社群~

LeetCode 周赛上分之旅 #43 计算机科学本质上是数学吗?的更多相关文章

  1. C++学习笔记----3.2 C++引用在本质上是什么,它和指针到底有什么区别

    从概念上讲.指针从本质上讲就是存放变量地址的一个变量,在逻辑上是独立的,它可以被改变,包括其所指向的地址的改变和其指向的地址中所存放的数据的改变. 而引用是一个别名,它在逻辑上不是独立的,它的存在具有 ...

  2. leetcode 784. Letter Case Permutation——所有BFS和DFS的题目本质上都可以抽象为tree,这样方便你写代码

    Given a string S, we can transform every letter individually to be lowercase or uppercase to create ...

  3. LeetCode 周赛 334,在算法的世界里反复横跳

    本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问. 大家好,我是小彭. 今天是 LeetCode 第 334 场周赛,你参加了吗?这场周赛考察范围比较基础,整体 ...

  4. 刷爆 LeetCode 周赛 337,位掩码/回溯/同余/分桶/动态规划·打家劫舍/贪心

    本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问. 大家好,我是小彭. 上周末是 LeetCode 第 337 场周赛,你参加了吗?这场周赛第三题有点放水,如果 ...

  5. LeetCode 周赛 342(2023/04/23)容斥原理、计数排序、滑动窗口、子数组 GCB

    本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问. 大家好,我是小彭. 前天刚举办 2023 年力扣杯个人 SOLO 赛,昨天周赛就出了一场 Easy - Ea ...

  6. Jsp与servlet本质上的区别

    1.jsp经编译后就变成了Servlet.(JSP的本质就是Servlet,JVM只能识别java的类,不能识别JSP的代码,Web容器将JSP的代码编译成JVM能够识别的java类)2.jsp更擅长 ...

  7. jQuery的$.ajax方法响应数据类型有哪几种?本质上原生ajax响应数据格式有哪几种,分别对应哪个属性?

    jQuery的$.ajax方法响应数据类型有:xml.html.script.json.jsonp.text 本质上原生ajax响应数据格式只有2种:xml和text,分别对应xhr.response ...

  8. Kindle:自动追更之云上之旅

    2017年5月27: 原来的程序是批处理+Python脚本+Calibre2的方式,通过设定定时任务的方式,每天自动发动到自己的邮箱中.缺点是要一直开着电脑,又不敢放到服务器上~~ 鉴于最近公司查不关 ...

  9. WCF开发框架形成之旅--个人图片信息的上传保存

    WCF开发框架形成之旅--个人图片信息的上传保存 http://www.cnblogs.com/wuhuacong/archive/2011/12/23/2299614.html 一般在业务系统里面, ...

  10. 使用深度学习检测TOR流量——本质上是在利用报文的时序信息、传输速率建模

    from:https://www.jiqizhixin.com/articles/2018-08-11-11 可以通过分析流量包来检测TOR流量.这项分析可以在TOR 节点上进行,也可以在客户端和入口 ...

随机推荐

  1. 代码随想录算法训练营Day6 哈希表|242.有效的字母异位词 349.两个数组的交集 202.快乐数 1.两数之和

    哈希表理论基础 哈希表 哈希表(Hash tble)是根据关键码的值而进行直接访问的数据结构. 哈希表简单来说是数组,当我们遇到了要快速判断一个元素是否出现在集合里的时候,就要考虑哈希表. 哈希表中的 ...

  2. 终极指南!Terraform的进阶技巧

    如果您已经对 Terraform 了如指掌,并期望自己的 IaC 技能有进一步提升的话,这篇文章很适合您!在本文中,我们将分享一些 Terraform 的高级使用技巧.从使用模块(module).工作 ...

  3. linux 递归和函数实验

    递归 作用:自己调用自己 1.例子:阶乘 2.遍历目录下所有文件 函数 1.函数能够接受一个参数,参数为用户名: 判断一个用户是否存在 如果存在,就返回此用户的shell 和 UID :并返回正常状态 ...

  4. Python正则表达式完全指南

    本篇文章将深入探讨python的一项强大工具:正则表达式.正则表达式是一个强大的文本处理工具,可以用来匹配,搜索,替换和解析文本.我们将逐步展示如何在Python中使用正则表达式,包括其基本语法,常见 ...

  5. 基于Node.js的分布式应用程序架构设计与最佳实践:实现高效、可扩展的分布式系统

    目录 基于Node.js的分布式应用程序架构设计与最佳实践:实现高效.可扩展的分布式系统 随着互联网的普及和发展,分布式系统已经成为现代应用程序中不可或缺的一部分.而Node.js作为当前最流行的Ja ...

  6. 2023-06-26:在大小为 n x n 的网格 grid 上,每个单元格都有一盏灯,最初灯都处于 关闭 状态 给你一个由灯的位置组成的二维数组 lamps 其中 lamps[i] = [rowi,

    2023-06-26:在大小为 n x n 的网格 grid 上,每个单元格都有一盏灯,最初灯都处于 关闭 状态 给你一个由灯的位置组成的二维数组 lamps 其中 lamps[i] = [rowi, ...

  7. React后台管理系统 02样式初始化,引入reset-css

    上一篇中,我们已经对项目的整体结构进行了搭建,现在需要对不需要的东西进行删除,最后留下这些东西. 现在需要对全部的样式进行清除,使用命令导入依赖:npm i reset-css 然后在main.tsx ...

  8. PHP支付接口签名生成数据

    <?php //作者主页 https://www.woailunwen.com $pay_memberid = '商户号'; $pay_orderid = '订单号'; $pay_amount ...

  9. CodeTON Round 5 (Div. 1 + Div. 2, Rated, Prizes!) A-E

    比赛链接 A 代码 #include <bits/stdc++.h> using namespace std; using ll = long long; bool solve() { i ...

  10. RAT蓝队自动化测试框架

    RAT蓝队自动化测试框架 介绍 RAT 是根据 MITRE ATT&CK 战术矩阵测试蓝队检测能力的脚本框架,由 python2.7 编写,共有 50 多种不同 ATT&CK 技术点和 ...