题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2935

有向图用最小的路径(==总点数最少)覆盖所有边。

完了完了我居然连1999年的题都做不出来了。

TJ:https://blog.csdn.net/u014609452/article/details/53705451

仔细一想,原来就是欧拉回路的连通块自然不用说,原来不是欧拉回路的连通块,我们在走路径的时候不时从一个点跳到另一个点,其实可以看作是给这两个点间连了一条边!

所以手动连一个欧拉回路。这样应该一定是最小的。

因为是欧拉回路,所以有点浪费。因为其实欧拉路就可以了,只是我们不会连成欧拉路罢了。

考虑把自己连的一条边当做路径的开始或结尾,这样就可以不走那条边,从而变成欧拉路。体现在答案上就是少了一个点,点数==删边前边数。

TJ的代码实现这一过程写得太好啦!无耻默写。

所以需要回顾!

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=;
int n,sum,deg[N+],fa[N+],ans;
bool tag[N+],vis[N+];
int find(int a){return fa[a]==a?a:fa[a]=find(fa[a]);}
int main()
{
for(int i=;i<=N;i++)fa[i]=i;
scanf("%d",&n);int x,y;ans=n;//原边数
for(int i=;i<=n;i++)
{
scanf("%d%d",&x,&y);
vis[x]=;vis[y]=;
deg[x]++;deg[y]--;
if(find(x)!=find(y))fa[find(x)]=find(y);
}
for(int i=;i<=N;i++)
if(vis[i]&&deg[i])tag[find(i)]=;
for(int i=;i<=N;i++)
if(vis[i]&&fa[i]==i&&!tag[i])ans++;//原欧拉回路+1
for(int i=;i<=N;i++)
sum+=(deg[i]>?deg[i]:-deg[i]);//补的边
ans+=sum/;
printf("%d",ans);
return ;
}

bzoj 2935 [Poi1999]原始生物——欧拉回路思路!的更多相关文章

  1. 【刷题】BZOJ 2935 [Poi1999]原始生物

    Description 原始生物的遗传密码是一个自然数的序列K=(a1,...,an).原始生物的特征是指在遗传密码中连续出现的数对(l,r),即存在自然数i使得l=ai且r=ai+1.在原始生物的遗 ...

  2. bzoj2935 [Poi1999]原始生物——欧拉回路

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2935 考察欧拉回路性质的题目呢: TJ:https://blog.csdn.net/u014 ...

  3. BZOJ2935: [Poi1999]原始生物(欧拉回路)

    2935: [Poi1999]原始生物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 150  Solved: 71[Submit][Status][D ...

  4. BZOJ 2935/ Poi 1999 原始生物

    [bzoj2935][Poi1999]原始生物   2935: [Poi1999]原始生物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 145  So ...

  5. 【bzoj2935】[Poi1999]原始生物

    2935: [Poi1999]原始生物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 145  Solved: 71[Submit][Status][D ...

  6. BZOJ 2933([Poi1999]地图-区间Dp)

    2933: [Poi1999]地图 Time Limit: 1 Sec   Memory Limit: 128 MB Submit: 7   Solved: 7 [ Submit][ Status] ...

  7. BZOJ.5288.[AHOI/HNOI2018]游戏(思路 拓扑)

    BZOJ LOJ 洛谷 考虑如何预处理每个点能到的区间\([l,r]\). 对于\(i,i+1\)的一扇门,如果钥匙在\(i\)的右边,连边\(i\to i+1\),表示从\(i\)出发到不了\(i+ ...

  8. BZOJ.4820.[SDOI2017]硬币游戏(思路 高斯消元 哈希/AC自动机/KMP)

    BZOJ 洛谷 建出AC自动机,每个点向两个儿子连边,可以得到一张有向图.参照 [SDOI2012]走迷宫 可以得到一个\(Tarjan\)+高斯消元的\(O((nm)^3)\)的做法.(理论有\(6 ...

  9. BZOJ.4052.[Cerc2013]Magical GCD(思路)

    BZOJ \(Description\) 给定\(n\)个数的序列\(a_i\).求所有连续子序列中,序列长度 × 该序列中所有数的gcd 的最大值. \(n\leq10^5,\ a_i\leq10^ ...

随机推荐

  1. .Global.asax.cs中的方法的含义

    Application_Init:在每一个HttpApplication实例初始化的时候执行 Application_Disposed:在每一个HttpApplication实例被销毁之前执行 App ...

  2. BZOJ1597: [Usaco2008 Mar]土地购买——斜率优化

    题目大意: 将$n$个长方形分成若干部分,每一部分的花费为部分中长方形的$max_长*max_宽$(不是$max_{长*宽}$),求最小花费 思路: 首先,可以被其他长方形包含的长方形可以删去 然后我 ...

  3. Educational Codeforces Round 69 D E

    Educational Codeforces Round 69 题解 题目编号 A B C D E F 完成情况 √ √ √ ★ ★ - D. Yet Another Subarray Problem ...

  4. [笔记]xshell Session

    因之前正常使用的xshell5 绿色版,在重装系统之后 启动时提示缺少 MSCVP110.dll xshell5 绿色版,启动时提示缺少 MSCVP110.dll,在各网站下载了对应的Dll文件,依然 ...

  5. jvisualvm图解【转】

    jvisualvm图解[转]   http://blog.csdn.net/a19881029/article/details/8432368 jvisualvm能干什么:监控内存泄露,跟踪垃圾回收, ...

  6. 扩展kmp板子

    using namespace std; #include <cstdio> #include <cstring> #include <algorithm> #de ...

  7. LUOGU P1453 城市环路(基环树+dp)

    传送门 解题思路 一道基环树上$dp$的题,这种题比较套路吧,首先第一遍$dfs$把环找出来,然后对于环上的每一个点都向它子树内做一次树形$dp$,$f[i][0/1]$表示到了$i$这个点选或不选的 ...

  8. QQ交流群

  9. promise体验

    promise的执行流程 promise串行执行异步 job1.then(job2).then(job3).catch(handleError); // 0.5秒后返回input*input的计算结果 ...

  10. vue实现分环境打包步骤(给不同的环境配置相对应的打包命令)

    在新建好的项目中,一般执行npm run build就是打包了,但此时只能打包到一个环境,不同环境需要配置不同的地址,可以手动更改接口的地址,也可以自行配置命令而不需要每次打包进行地址切换,步骤如下: ...