题目传送门

题意:初始有n棵树,每棵树都只有1个n号节点,现在有m次添加操作,每次操作是将$[l,r]$范围内的树的$u$节点后面添加一个$v$节点。每个v节点只会被添加一次。

  然后是q次询问,输出$[l,r]$范围内的树$x$节点的子树大小之和。

思路:由于每个节点被当成子节点添加到树上只会被添加一次,所以假设直接将节点连到一棵树上,按照dfs排序之后,x节点的子树dfs序必定是连续的。

  考虑主席树,我们以dfs序为主席树的版本,每个节点就让$(ql,qr)$之间的树加一,最后只需要将ou[x]和in[x]-1这两个版本之间的主席树相减即可。(代码在最下方)

  另一个做法:考虑扫描线,我们还是先处理处dfs序,对于节点x的求解,我们可以分解成,减去x之前所有节点(ql,qr)的值,再加上ou[x]的(ql,qr)的值,就得到了我们要的答案。所以我们还是按dfs序处理线段树,将每一个节点的影响加入线段树后,再处理这个节点需要加减的地方即可。我自己没有写过扫描线版本,此处引用一位朋友的代码。

//这是扫描线的关键,此处的线段树就是一个普通的区间求和的线段树。    
scanf("%d", &q);
for(int i = ; i <= q; i++) {
int x, l, r;
scanf("%d%d%d", &x, &l, &r);
V[in[x] - ].push_back(Qus{-, l, r, i});
V[ot[x]].push_back(Qus{, l, r, i});
}
for(int i = ; i <= idx; i++) {
Tree.update(L[rk[i]], R[rk[i]], , , n, );
for(auto t : V[i]) {
ans[t.id] += t.op * Tree.query(t.l, t.r, , n, );
}
}
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define dep(i,b,a) for(int i=b;i>=a;i--)
#define clr(a,b) memset(a,b,sizeof(a))
#define pb push_back
#define pii pair<int,int >
using namespace std;
typedef long long ll;
ll rd()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int maxn=;
const int inf=0x3f3f3f3f;
int n,m,q,tot,root[maxn],l[maxn],r[maxn],in[maxn],ou[maxn],re[maxn],ti;
struct node{
int l,r;
ll sum,lazy;
}tr[maxn*];
vector<int >ve[maxn];
void dfs(int u){
in[u]=++ti;
re[ti]=u;
for(auto it:ve[u]){
dfs(it);
}
ou[u]=ti;
}
void update(int &rt,int pre,int l,int r,int ql,int qr,ll val){
tr[rt=++tot]=tr[pre];
tr[rt].sum+=(qr-ql+)*val;
if(ql<=l&&r<=qr){
tr[rt].lazy+=val;
return;
}
int mid=(l+r)>>;
if(ql<=mid)update(tr[rt].l,tr[pre].l,l,mid,ql,min(qr,mid),val);
if(mid<qr)update(tr[rt].r,tr[pre].r,mid+,r,max(mid+,ql),qr,val);
}
ll query(int rt,int pre,int l,int r,int ql,int qr,ll add){
if(ql<=l&&r<=qr){
return tr[rt].sum-tr[pre].sum+(r-l+)*add;
}
add+=tr[rt].lazy-tr[pre].lazy;
int mid=(l+r)>>;
ll res=;
if(ql<=mid)res+=query(tr[rt].l,tr[pre].l,l,mid,ql,qr,add);
if(mid<qr)res+=query(tr[rt].r,tr[pre].r,mid+,r,ql,qr,add);
return res; }
int main(){
cin>>n>>m;
l[]=,r[]=n;
for(int i=;i<=m;i++){
int u,v,x,y;
u=rd(),v=rd(),x=rd(),y=rd();
ve[u].pb(v);
l[v]=x,r[v]=y;
}
dfs();
for(int i=;i<=ti;i++){
int u=re[i];
update(root[i],root[i-],,n,l[u],r[u],);
}
cin>>q;
rep(i,,q){
int x,ql,qr;
x=rd(),ql=rd(),qr=rd();
printf("%lld\n",query(root[ou[x]],root[in[x]-],,n,ql,qr,));
}
}

2019牛客暑期多校训练营(第八场)I-Inner World DFS序+主席树(扫描线也可)的更多相关文章

  1. 2019牛客暑期多校训练营(第九场)H Cutting Bamboos(主席树+二分)

    题意:n个竹子,有高度,q次询问,询问之间是独立的,每次查询输入l,r,x,y代表砍区间[l,r]]内的竹子砍y次,最后一次要砍成0,每次砍掉的总长度相同,问第x次砍的高度是多少. 既然每次要求砍掉的 ...

  2. 2019牛客暑期多校训练营(第一场)I Points Division(dp+线段树优化)

    给你n个点,第i个点在的位置为(xi,yi),有两个属性值(ai,bi).现在让你把这n个点划分为A和B两个部分,使得最后不存在i∈A和j∈B,使得xi>=xj且yi<=yj.然后对于所有 ...

  3. 2019牛客暑期多校训练营(第九场)A:Power of Fibonacci(斐波拉契幂次和)

    题意:求Σfi^m%p. zoj上p是1e9+7,牛客是1e9:  对于这两个,分别有不同的做法. 前者利用公式,公式里面有sqrt(5),我们只需要二次剩余求即可.     后者mod=1e9,5才 ...

  4. 2019牛客暑期多校训练营(第一场)A题【单调栈】(补题)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 题目描述 Two arrays u and v each with m distinct elem ...

  5. 2019牛客暑期多校训练营(第一场) B Integration (数学)

    链接:https://ac.nowcoder.com/acm/contest/881/B 来源:牛客网 Integration 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 5242 ...

  6. 2019牛客暑期多校训练营(第一场) A Equivalent Prefixes ( st 表 + 二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A 来源:牛客网 Equivalent Prefixes 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/ ...

  7. 2019牛客暑期多校训练营(第二场)F.Partition problem

    链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...

  8. 2019牛客暑期多校训练营(第一场)A Equivalent Prefixes(单调栈/二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 Two arrays u and v each with m distinct elements ...

  9. [状态压缩,折半搜索] 2019牛客暑期多校训练营(第九场)Knapsack Cryptosystem

    链接:https://ac.nowcoder.com/acm/contest/889/D来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言52428 ...

  10. 2019牛客暑期多校训练营(第二场)J-Subarray(思维)

    >传送门< 前言 这题我前前后后看了三遍,每次都是把网上相关的博客和通过代码认真看了再思考,然并卵,最后终于第三遍也就是现在终于看懂了,其实懂了之后发现其实没有那么难,但是的的确确需要思维 ...

随机推荐

  1. 解决 html5 input type='number' 类型可以输入e

    当给 input 设置类型为 number 时,比如,我想限制,只能输入 0-9 的正整数,正则表达式如下: /^[-]?$/ // 匹配 0-9 的整数且只匹配 0 次或 1 次 用正则测试,小数点 ...

  2. Webpack4篇

    [Webpack4篇] webpack4 打包优化策略 当前依赖包的版本 1 优化loader配置 1.1 缩小文件匹配范围(include/exclude) 通过排除node_modules下的文件 ...

  3. 并发编程之Android中AsyncTask使用详解(四)

    更多Android高级架构进阶视频免费学习请点击:[https://space.bilibili.com/474380680] 在Android中我们可以通过Thread+Handler实现多线程通信 ...

  4. 兼容ie8浏览器的准备工作

    一.html5shiv.js和respond.min.js html5shiv:解决ie9以下浏览器对html5新增标签的不识别,并导致CSS不起作用的问题. respond.min:让不支持css3 ...

  5. 微信小程序开发简易计算器改进版

    微信小程序开发计算器有多种方法,但是大部分代码比较复杂.不容易理解.本案例进行了改进,主要是组件bindtap属性绑定的自定义函数clickBtn(),采用了switch语句,使得代码结构更加清晰,学 ...

  6. Vue下渐变效果有时候失效

    记录一个问题:我在项目中给按钮设置一个渐变属性,调试的时候有时候有效果,有时候又没有,代码如下: .training-right-bmz { background: -webkit-linear-gr ...

  7. frp 配置多个 web 项目,无需购买域名 (访问内网可视化界面,jupyter noterbook, visdom, tensorboard)

    frp 配置多个 web 项目,无需购买域名 简单配置,参考 前言: 网上也有很多教程包括官方文档,都需要购买域名,并且把 frpc.ini 中 [web]节配置的  custom_domains 的 ...

  8. 关于apache 重定向设定

    本人在研究关于apache重定向的资料,在网上找了很多,但是就本人来说,方便理解的,找到了这么一个,记录了下来,原帖地址:http://www.exehack.net/8.html 关于apache配 ...

  9. struts2注解返回json

    Struts2使用注解方式返回Json数据 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/Geek_Alex/article/details/788 ...

  10. Servlet(Server Applet) 详解

    Java编写的服务器端程序.其主要功能在于交互式地浏览和修改数据,生成动态Web内容. Servlet的工作模式 客户端发送请求至服务器 服务器启动并调用Servlet,Servlet根据客户端请求生 ...