题意:求平面最近点对之间的距离

解:首先可以想到枚举的方法,枚举i,枚举j算点i和点j之间的距离,时间复杂度O(n2).

  如果采用分治的思想,如果我们知道左半边点对答案d1,和右半边点的答案d2,如何求跨两边点之间的答案呢?显然只用枚举中线两边d=min(d1,d2)范围的点,并且每个点都只需要枚举上下范围在d以内的点,显然这样的点不会很多。

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <deque>
#include <map>
using namespace std;
typedef long long ll;
const double inf=1e20;
const int maxn=; struct Point{
double x, y;
}point[maxn]; int n, mpt[maxn]; //以x为基准排序
bool cmpxy(const Point &a,const Point &b){
if(a.x!=b.x)
return a.x<b.x;
return a.y<b.y;
} bool cmpy(const int &a,const int &b){
return point[a].y<point[b].y;
} double min(double a,double b){
return a<b?a:b;
} double dis(int i,int j){
return sqrt((point[i].x-point[j].x)*(point[i].x-point[j].x) + (point[i].y - point[j].y)*(point[i].y - point[j].y));
} double Closest_Pair(int left, int right){
double d=inf;
if(left==right)
return d;
if(left+==right)
return dis(left,right);
int mid=(left+right)>>;
double d1=Closest_Pair(left,mid);
double d2=Closest_Pair(mid+,right);
d=min(d1,d2);
int i,j,k=;
//分离出宽度为d的区间
for(i=left;i<=right;i++){
if(fabs(point[mid].x-point[i].x)<=d)
mpt[k++]=i;
}
sort(mpt,mpt+k,cmpy);
//线性扫描
for(i=;i<k;i++){
for(j=i+;j<k&&point[mpt[j]].y-point[mpt[i]].y<d; j++){
double d3=dis(mpt[i],mpt[j]);
if(d>d3)d=d3;
}
}
return d;
} int main(){
while(scanf("%d",&n)!=EOF){
if(n==)break;
for(int i=;i<n;i++)
scanf("%lf%lf",&point[i].x,&point[i].y);
sort(point,point+n,cmpxy);
printf("%.2lf\n",Closest_Pair(,n-)/);
}
return ;
}

hdu 1007 Quoit Design(平面最近点对)的更多相关文章

  1. HDU 1007 Quoit Design 平面内最近点对

    http://acm.hdu.edu.cn/showproblem.php?pid=1007 上半年在人人上看到过这个题,当时就知道用分治但是没有仔细想... 今年多校又出了这个...于是学习了一下平 ...

  2. HDU 1007 Quoit Design | 平面分治

    暂鸽 #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> #d ...

  3. HDU 1007 Quoit Design(经典最近点对问题)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...

  4. HDU 1007 Quoit Design【计算几何/分治/最近点对】

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  5. hdu 1007 Quoit Design (最近点对问题)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  6. hdu 1007 Quoit Design 分治求最近点对

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  7. HDU 1007 Quoit Design(二分+浮点数精度控制)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  8. HDU 1007 Quoit Design

    传送门 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Problem Des ...

  9. HDU 1007 Quoit Design(计算几何の最近点对)

    Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...

随机推荐

  1. 【C++】应用程序无法正常启动0xc000007b

    在Windows平台编程时,或运行应用程序时,偶尔会遇到“应用程序无法正常启动0xc000007b”或“缺少***.dll”的问题, 首先需要考虑的就是程序相关联的dll有没有放到系统环境中,dll通 ...

  2. 菜鸡发现腾讯视频bug

    腾讯视频bug 我看一个将夜,出现三生三世? 这是为啥? 发现bug,会得到奖励吗? 不会像dnf一样游戏自己的bug,然后出现伤害999,把我号封了. 我这样会被封号吗?我应该怎么做才不会被封?好慌 ...

  3. 从敏捷开发到微服务,maybe再到中台

    -- 先说下准备这个的背景: 本来是想让我分享下敏捷开发,可能是听我说为as**搭建并完善了敏捷开发体系的原因吧. 我一般分享一个东西,希望大家能真的理解,而不只是知道. 我不大相信有万能的东西,不希 ...

  4. js + php服务器推送see(自定义推送时间)

    //javascript code var source = new EventSource("./main.php"); source.onmessage=function(ev ...

  5. rabbit MQ 消息队列

    为什么会需要消息队列(MQ)? 一.消息队列概述消息队列中间件是分布式系统中重要的组件,主要解决应用解耦,异步消息,流量削锋等问题,实现高性能,高可用,可伸缩和最终一致性架构.目前使用较多的消息队列有 ...

  6. [Linux]命令返回值以及错误对照表

    Linux执行完命令之后默认会有一个返回值 # ls app backupconfig.json Doc manage.py __pycache__ settings.py # echo $? 0 错 ...

  7. Java源码系列1——ArrayList

    本文简单介绍了 ArrayList,并对扩容,添加,删除操作的源代码做分析.能力有限,欢迎指正. ArrayList是什么? ArrayList 就是数组列表,主要用来装载数据.底层实现是数组 Obj ...

  8. ShiroConfig配置文件无法通过@Value加载yml变量的解决办法

    /** * 配置Shiro生命周期处理器 * 使用springboot整合shiro时,@value注解无法读取application.yml中的配置 *解决方法:将LifecycleBeanPost ...

  9. PHPExcel使用

       参考链接: 官方github:https://github.com/PHPOffice/PHPExcel 设置表格字体颜色等操作:http://www.cnblogs.com/grimm/p/9 ...

  10. Android中TimePicker时间选择器的使用和获取选择的时和分

    场景 实现效果如下 注: 博客: https://blog.csdn.net/badao_liumang_qizhi 关注公众号 霸道的程序猿 获取编程相关电子书.教程推送与免费下载. 实现 将布局改 ...