Irrelevant Elements UVA-1635 (二项式定理)
乍一看似乎没什么思路,但是写几个简单的例子之后规律就变得很明显。
比如当 n=5 时,每一步计算后的结果如下:
a1
a1+a2
a1+2a2+a3
a1+3a2+3a3+a4
a1+4a2+6a3+4a4+a5
显然系数“1, 4, 6, 4, 1”就是杨辉三角第五行。
故某一项的系数是否是题中 m 的倍数,就决定了最终得到的数除以 n 的余数和那一项是否有关。
二项式定理:
从中很容易得到前后两项的关系 C(n, k)=(n-k+1)/k*C(n, k-1)
。但是单纯用这个公式暴力得到每个系数一定会导致溢出,故需要运用唯一分解定理分别存储每个系数的素因数和指数。
一般的代码不难给出,但是一直TLE。最后发觉应该先分解 m ,再得到 m 的素因数在各个 C(n,k) 中的指数,若指数过小则可以提前结束当前的分解。由于 m>1 ,可以忽略 nk 和 n0 的情况。
我的 AC 代码如下,最初是用 ANSI C 写的,一步一步改过来,故非常不简洁。其中用 map 存储素因数,其中元素 -1 用来作为该项是否能被 m 整除的 flag。
/*
*lang C++ 5.3.0
*user Weilin_C
*/
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cstdio>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <algorithm>
#include <sstream>
#include <vector>
#include <map>
//#include <unordered_map>
#include <set>
#include <list>
#include <queue>
//每个数用map分质因数存储
//质数用素数筛 2-1000000000, MAXM=1000000
#define MAXM 1000000
#define MAXN 100000+5
using namespace std;
map <int, int> sta[MAXN], mm;
int pos[MAXN];
int prime[MAXM+1];
void mtomap (map<int, int> *ma, int n, int p)
{ //解码m n: 解码的数 p: 数n的个数
int num=n;
for (int i=2; i<=MAXM && num>0; i++) {
if (!prime[i]) {
while (num%i==0 && num>0) {
num/=i;
(*ma).insert(pair<int, int>(i, 0));
(*ma)[i]+=p;
}
}
}
if (num>1) (*ma).insert(pair<int, int>(num, 1));
return;
}
void ntomap (map<int, int> *ma, int n, int p)
{ //用于逐个解码第n行的杨辉三角 n: 解码的数 p: 数n的个数
map <int, int>::iterator it;
int num=n, t;
if (n<2) return;
for (it=mm.begin(); it!=mm.end(); it++) {
t=it->first;
if (t<2) continue;
(*ma).insert(pair<int, int>(t, 0));
while (num%t==0 && num>0) {
num/=t;
(*ma)[t]+=p;
}
if ((*ma)[t]<it->second) (*ma)[-1]=0;
}
return;
}
int judge(map<int, int> *ma)
{ //是否为0或1
int flag=0;
map <int, int>::iterator it;
for (it=(*ma).begin(); it!=(*ma).end(); it++)
if (it->second!=0 && it->first!=-1) {
flag=1;
break;
}
return flag;
}
int main()
{
int m, n;
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
/* C(n, k) = (n-k+1)/k * C(n, k-1) */
for (int i=2; i<=sqrt(MAXM+1); i++) {
if (prime[i]) continue;
for (int j=i+i; j<=MAXM; j+=i) prime[j]=1;
}
while (scanf("%d%d", &n, &m)==2) { //n: 杨辉三角层数
//printf("%d %d\n", n, m);
for (int i=0; i<=n; i++) if (!sta[i].empty()) sta[i].clear();
mm.clear();
sta[0][m]=0;
sta[0][-1]=0;
mtomap(&mm, m, 1);
map <int, int>::iterator it;
for (int i=1; i<n; i++) {
for (it=sta[i-1].begin(); it!=sta[i-1].end(); it++) sta[i][it->first]=it->second;
sta[i][-1]=1;
ntomap(&sta[i], n-i, 1);
ntomap(&sta[i], i, -1);
}
pos[0]=0;
int ans=0;
for (int i=0; i<n; i++) {
if (sta[i][-1] && judge(&sta[i])) {
ans++;
pos[++pos[0]]=i+1;
}
}
printf("%d\n", ans);
int f=0;
for (int i=1; i<=pos[0]; i++) {
if (f) putchar(' ');
else f=1;
printf("%d", pos[i]);
}
putchar('\n');
}
return 0;
}
by SDUST weilinfox
本文链接:https://www.cnblogs.com/weilinfox/p/12241600.html
Irrelevant Elements UVA-1635 (二项式定理)的更多相关文章
- Irrelevant Elements UVA - 1635 二项式定理+组合数公式+素数筛+唯一分解定理
/** 题目:Irrelevant Elements UVA - 1635 链接:https://vjudge.net/problem/UVA-1635 题意:給定n,m;題意抽象成(a+b)^(n- ...
- UVA1635 Irrelevant Elements —— 唯一分解定理 + 二项式定理
题目链接:https://vjudge.net/problem/UVA-1635 (紫书320) 题解: 1.根据二项式定理, 可得递推公式: C(n,k) = (n-k+1)/k * C(n, k- ...
- UVa 1635 - Irrelevant Elements-[分解质因数]
Young cryptoanalyst Georgie is investigating different schemes of generating random integer numbers ...
- POJ2167 Irrelevant Elements
Time Limit: 5000MS Memory Limit: 65536KB 64bit IO Format: %lld & %llu Description Young cryp ...
- POJ 2167 Irrelevant Elements 质因数分解
Irrelevant Elements Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 2231 Accepted: 55 ...
- UVa 1635 - Irrelevant Elements(二项式系数 + 唯一分解定理)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVa 1635 (唯一分解定理) Irrelevant Elements
经过紫书的分析,已经将问题转化为求组合数C(n-1, 0)~C(n-1, n-1)中能够被m整除的个数,并输出编号(这n个数的编号从1开始) 首先将m分解质因数,然后记录下每个质因子对应的指数. 由组 ...
- UVA 1635 Irrelevant Elements
https://vjudge.net/problem/UVA-1635 题意:n个数,每相邻两个求和,最后变成1个数,问这个数除m的余数与第几个数无关 n个数使用次数分别为C(n-1,i) i∈[0, ...
- UVa 1635 无关的元素(唯一分解定理+二项式定理)
https://vjudge.net/problem/UVA-1635 题意: 给定n个数a1,a2,...an,依次求出相邻两数之和,将得到一个新数列.重复上述操作,最后结果将变成一个数.问这个数除 ...
随机推荐
- cisco网络设备IOS升级步骤
step1:检查和备份================================================================4507R#write4507R#copy run ...
- sqlserver 2005 备份还原失败
1.直接右键还原数据库可能会失败.如果失败 使用下面的sql语句还原 USE MASTER RESTORE DATABASE bingo FROM DISK = 'F:\DevProject\bing ...
- DEVOPS技术实践_08:声明式管道语法
简介 前面简单的做了管道的实验,看了一下的它的效果 声明式管道是Groovy语法中的一个更简单和结构化的语法.下面主要学习明式管道语法. 一 声明式管道的基本结构 以上节的代码为例 node { de ...
- 【题解】BZOJ4241: 历史研究(魔改莫队)
[题解]BZOJ4241: 历史研究(魔改莫队) 真的是好题啊 题意 给你一个序列和很多组询问(可以离线),问你这个区间中\(\max\){元素出现个数\(\times\)元素权值} IOI国历史研究 ...
- $tarjan$简要学习笔记
$QwQ$因为$gql$的$tarjan$一直很差所以一直想着要写个学习笔记,,,咕了$inf$天之后终于还是写了嘻嘻. 首先说下几个重要数组的基本定义. $dfn$太简单了不说$QwQ$ 但是因为有 ...
- 初次在cmd使用git命令上传项目至github方法(笔记)
在一切开始之前,先推荐一个git简易工具书--Git_Cheat_Sheet,非常适合新手.自行搜索即可,也有热心者提供了中文版. 一.下载 Git 从Git官网下载Git安装包 https://gi ...
- Redis 中的数据持久化策略(RDB)
Redis 是一个内存数据库,所有的数据都直接保存在内存中,那么,一旦 Redis 进程异常退出,或服务器本身异常宕机,我们存储在 Redis 中的数据就凭空消失,再也找不到了. Redis 作为一个 ...
- .NET Core 3.1之深入源码理解HealthCheck(二)
写在前面 前文讨论了HealthCheck的理论部分,本文将讨论有关HealthCheck的应用内容. 可以监视内存.磁盘和其他物理服务器资源的使用情况来了解是否处于正常状态. 运行状况检查可以测试应 ...
- VS Code配置C/C++环境
VS Code配置C/C++环境 一.下载和安装VS Code 1.访问VS Code官网下载安装包 2.安装VS Code 3. 安装后, 打开VS Code是英文,按住Ctrl+shift+x进入 ...
- javaScript类型和对象
javaScript基本数据类型 Undefined: Null: Boolean: String: Number: Symbol: Object. 注意 JavaScript 的代码 undefin ...