**1354 Mobile Computing**

There is a mysterious planet called Yaen, whose space is 2-dimensional. There are many beautiful stones on the planet, and the Yaen people love to collect them. They bring the stones back home and make nice mobile arts of them to decorate their 2-dimensional living rooms. 
In their 2-dimensional world, a mobile is defined recursively as follows: 
• a stone hung by a string, or 
• a rod of length 1 with two sub-mobiles at both ends; the rod is hung by a string at the center of gravity of sub-mobiles. When the weights of the sub-mobiles are n and m, and their distances from the center of gravity are a and b respectively, the equation n × a = m × b holds. 
For example, if you got three stones with weights 1, 1, and 2, here are some possible mobiles and their widths: 
Given the weights of stones and the width of the room, your task is to design the widest possible mobile satisfying both of the following conditions. 
• It uses all the stones. 
• Its width is less than the width of the room. 
You should ignore the widths of stones. 
In some cases two sub-mobiles hung from both ends of a rod might overlap (see the figure on the right). Such mobiles are acceptable. The width of the example is (1/3) + 1 + (1/4). 
Input 
The first line of the input gives the number of datasets. Then the specified number of datasets follow. A dataset has the following format. 
r s w1 . 
ws 
r is a decimal fraction representing the width of the room, which satisfies 0 < r < 10. s is the number of the stones. You may assume 1 ≤ s ≤ 6. wi is the weight of the i-th stone, which is an integer. You may assume 1 ≤ wi ≤ 1000. 
Input 
The first line of the input gives the number of datasets. Then the specified number of datasets follow. A dataset has the following format. 
r s w1 . 
ws 
r is a decimal fraction representing the width of the room, which satisfies 0 < r < 10. s is the number of the stones. You may assume 1 ≤ s ≤ 6. wi is the weight of the i-th stone, which is an integer. You may assume 1 ≤ wi ≤ 1000. 
You can assume that no mobiles whose widths are between r − 0.00001 and r + 0.00001 can be made of given stones. 
Output 
For each dataset in the input, one line containing a decimal fraction should be output. The decimal fraction should give the width of the widest possible mobile as defined above. An output line should not contain extra characters such as spaces. 
In case there is no mobile which satisfies the requirement, answer ‘-1’ instead. 
The answer should not have an error greater than 0.00000001. You may output any numb er of digits after the decimal point, provided that the ab ove accuracy condition is satisfied. 
Sample Input 

1.3 




1.4 




2.0 




1.59 





1.7143 





Sample Output 
-1 
1.3333333333333335 
1.6666666666666667 
1.5833333333333335 
1.7142857142857142

解题思路: 
1.采用自底向上的方法枚举树——每次随机选取两棵子树合并成一棵树,每个结点依次编号。 
2.对于一棵确定的树,其长度必然可以确定。以根结点为坐标轴原点,dfs计算每个结点相对根结点的距离即可求出该树宽度。 
注意:输入只有一块石头时,输出0;

 #include <iostream>
#include <cstdio>
#include <cstring> using namespace std;
const int maxn=;
int lchild[maxn];//左孩子编号
int rchild[maxn];//右孩子编号
int wight[maxn];//编号对应的质量
int vis[maxn];//-1表示编号不存在 0表示编号不在树中 1表示在树中
double dis[maxn]; double r,ans;
int s;
void init(){
ans=;
memset(lchild, -, sizeof lchild);
memset(rchild, -, sizeof rchild);
memset(wight,,sizeof wight);
memset(vis, -, sizeof vis);
} void calculate(int id){//计算每个编号相对根结点的距离
if(lchild[id]!=-){
dis[lchild[id]]=dis[id]-double(wight[rchild[id]])/double(wight[lchild[id]]+wight[rchild[id]]);
dis[rchild[id]]=dis[id]+double(wight[lchild[id]])/double(wight[lchild[id]]+wight[rchild[id]]);
calculate(lchild[id]);
calculate(rchild[id]);
}
} void search(int cnt,int m){//m为此阶段石头最大编号
if(cnt==){
memset(dis, , sizeof dis);
calculate();
double a=,b=;
for(int i=;i<maxn;i++){
if(dis[i]<a) a=dis[i];
if(dis[i]>b) b=dis[i];
}
double c=b-a;
// cout<<" "<<c<<endl;
if(c<r&&c>ans) ans=c;
return ;
}
for(int i=;i<maxn;i++){
if(vis[i]==){
vis[i]=;
for(int j=;j<maxn;j++){
if(vis[j]==){
vis[j]=;
if(cnt==){ lchild[]=i;rchild[]=j;
wight[]=wight[i]+wight[j];
search(cnt-,m);
}
else{ vis[m+]=;
lchild[m+]=i;rchild[m+]=j;
wight[m+]=wight[i]+wight[j];
search(cnt-,m+);
vis[m+]=-;
}
vis[j]=;
}
}
vis[i]=;
}
}
}
int main() {
//freopen("input.txt", "rb", stdin);
//freopen("output.txt","wb",stdout);
int N;
scanf("%d",&N);
while(N--){
init();
scanf("%lf%d",&r,&s); for(int i=;i<=s;i++){
scanf("%d",&wight[i]);
vis[i]=;
}
if(s==) {printf("%.16f\n",ans);continue;}
search(s,s);
if(ans==) cout<<"-1"<<endl;
else printf("%.16f\n",ans);
}
return ;
}

UVa 1354 Mobile Computing[暴力枚举]的更多相关文章

  1. UVa 1354 Mobile Computing | GOJ 1320 不加修饰的天平问题 (例题 7-7)

    传送门1(UVa): https://uva.onlinejudge.org/external/13/1354.pdf 传送门2(GOJ): http://acm.gdufe.edu.cn/Probl ...

  2. uva 1354 Mobile Computing ——yhx

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGcAAANuCAYAAAC7f2QuAAAgAElEQVR4nOy9XUhjWbo3vu72RRgkF5

  3. Uva 1354 Mobile Computing

    题目链接 题意: 在一个宽为r 的房间里, 有s个砝码, 每个天平的一端要么挂砝码, 要么挂另一个天平, 并且每个天平要保持平衡. 求使得所有砝码都放在天平上, 且总宽度不超过房间宽度的最大值. 思路 ...

  4. UVA - 11464 Even Parity 【暴力枚举】

    题意 给出一个 01 二维方阵 可以将里面的 0 改成1 但是 不能够 将 1 改成 0 然后这个方阵 会对应另外一个 方阵 另外一个方阵当中的元素 为 上 下 左 右 四个元素(如果存在)的和 要求 ...

  5. UVa 10603 Fill [暴力枚举、路径搜索]

    10603 Fill There are three jugs with a volume of a, b and c liters. (a, b, and c are positive intege ...

  6. UVA 10976 Fractions Again?!【暴力枚举/注意推导下/分子分母分开保存】

    [题意]:给你一个数k,求所有使得1/k = 1/x + 1/y成立的x≥y的整数对. [分析]:枚举所有在区间[k+1, 2k]上的 y 即可,当 1/k - 1/y 的结果分子为1即为一组解. [ ...

  7. UVA.12716 GCD XOR (暴力枚举 数论GCD)

    UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...

  8. UVA 10012 How Big Is It?(暴力枚举)

      How Big Is It?  Ian's going to California, and he has to pack his things, including his collection ...

  9. uva 11088 暴力枚举子集/状压dp

    https://vjudge.net/problem/UVA-11088 对于每一种子集的情况暴力枚举最后一个三人小组取最大的一种情况即可,我提前把三个人的子集情况给筛出来了. 即 f[S]=MAX{ ...

随机推荐

  1. Gradle中的buildScript,gradle wrapper,dependencies等一些基础知识

    就想收藏一篇好文,哈哈,无他 Gradle中的buildScript代码块 - 黄博文 然后记录一些gradle的基础知识: 1.gradle wrapper就是对gradle的封装,可以理解为项目内 ...

  2. Linux之脚本安装包

    1.脚本安装包 脚本安装包不是独立的软软件包类型,常见的安装时源码包 是人为把安装过程写成了自动安装的脚本,只要执行脚本,定义简单的参数,就可以完成安装 类似于windows下的软件安装 一般是硬件驱 ...

  3. 链表经典题Merge Two Sorted Lists

    Merge two sorted linked lists and return it as a new list. The new list should be made by splicing t ...

  4. 使用 Apachetop 实时监测web服务器运行状况

    转自 http://42.96.169.71/blog/2013/01/26/shi-yong-apachetop-shi-shi-jian-ce-webfu-wu-qi-yun-xing-zhuan ...

  5. 使用VirtualBox + Vagrant打造统一的开发环境

    https://blog.csdn.net/openn/article/details/54927375 配置步骤 安装VirtualBox 虚拟系统运行在VirtualBox中,类似的工具还有VMw ...

  6. python socketserver ftp上传功能

    一.socketserver用于多个客户端访问同一个服务端 客户端 import socket client = socket.socket() ip_port = ('127.0.0.1',8001 ...

  7. [Java]ITOO初步了解 标签: javajbosstomcat 2016-05-29 21:14 3367人阅读 评论(34)

      开始接触Java的ITOO了,这两天在搭环境,结果发现,哇,好多没接触过的东西,先写篇博客来熟悉一下这些工具. JBoss 基于Tomcat内核,青胜于蓝   Tomcat 服务器是一个免费的开放 ...

  8. 逗号分隔的字符串转换为Python中的列表 split

    将逗号分隔的字符串转换为Python中的列表   给定一个字符串: 它是由逗号分隔的几个值的序列: mStr = '192.168.1.1,192.168.1.2,192.168.1.3' 如何将字符 ...

  9. oracle函数 sqrt(x)

    [功能]返回x的平方根 [参数]x数字型表达式 [返回]数字 [示例] select sqrt(64),sqrt(10) from dual; 返回:8 , 3.16227766

  10. iPhone:constrainedToSize获取字符串的宽高

    在使用UILabel存放字符串时,经常需要获取label的长宽数据,本文列出了部分常用的计算方法. 1.获取宽度,获取字符串不折行单行显示时所需要的长度 CGSize titleSize = [aSt ...