题目描述

给出一个长度为n, 由小写英文字母组成的字符串S, 求在所有由小写英文字母组成且长度为n 且恰好有k 位与S 不同的字符串中,给定字符串T 按照字典序排在第几位。

由于答案可能很大,模10^9 + 7 输出。

输入

第一行为两个整数n; k

第二行一个字符串S

第三行一个字符串T,(T即是k位与S不同的串)

输出

输出一行取模后的答案。

样例输入

4 1

abcd

bbcd

样例输出

76

数据范围

对于前30% 的数据,n<=5

对于100% 的数据,k<=n<=10^5

解法

类似于数位动态规划。

代码

#include<iostream>
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
#define ll long long
#define ln(x,y) ll(log(x)/log(y))
#define sqr(x) ((x)*(x))
using namespace std;
const char* fin="string.in";
const char* fout="string.out";
const ll inf=0x7fffffff;
const ll maxn=100007,mo=1000000007;
ll n,m,i,j,k,ans,bz,cnt;
char a[maxn],b[maxn];
ll c[maxn],fact[maxn];
ll qpower(ll a,ll b){
ll c=1;
while (b){
if (b&1) c=c*a%mo;
a=a*a%mo;
b>>=1;
}
return c;
}
ll N(ll v){
return qpower(v,mo-2);
}
ll C(ll u,ll v){
return fact[v]*N(fact[u])%mo*N(fact[v-u])%mo;
}
int main(){
freopen(fin,"r",stdin);
freopen(fout,"w",stdout);
scanf("%d%d",&n,&m);
scanf("%s%s",a+1,b+1);
bz=0;
for (i=1;i<=n;i++)
if (a[i]<b[i]){
bz=1;
break;
}
fact[0]=1;
for (i=1;i<=n;i++) fact[i]=fact[i-1]*i%mo;
cnt=0;
for (i=1;i<=n;i++){
for (j='a';j<b[i];j++){
if (j==a[i]) {
if (m-cnt>n-i) continue;
ans=(ans+(C(m-cnt,n-i))*((qpower(25,m-cnt))%mo))%mo;
}
else {
if (m-cnt-1>n-i) continue;
ans=(ans+C(m-cnt-1,n-i)*(qpower(25,m-cnt-1))%mo)%mo;
}
}
if (a[i]!=b[i]) cnt++;
if (m==cnt) break;
}
ans=(ans+1)%mo;
printf("%lld",ans);
return 0;
}

启发

类似于这一题

往死里打

【JZOJ4812】【NOIP2016提高A组五校联考2】string的更多相关文章

  1. NOIP2016提高A组五校联考4总结

    坑爹的第一题,我居然想了足足3个小时,而且还不确定是否正确. 于是,我就在这种情况下心惊胆跳的打了,好在ac了,否则就爆零了. 第二题,树形dp,本来差点就想到了正解,结果时间不够,没打完. 第三题, ...

  2. 【NOIP2016提高A组五校联考4】square

    题目 分析 首先,设\(f_{i,j}\)表示最大的以(i,j)为左下角的正方形的边长. 转移显然,\(f_{i,j}=\max(f_{i-1,j},f_{i,j-1},f_{i-1,j-1})+1\ ...

  3. 【NOIP2016提高A组五校联考4】label

    题目 题目 20%算法 设\(f_{i,j}\)表示第i个节点选了j这个权值的方案数. 显然转移方程为,\[f_{i,j}=\Pi_{v=son(i)}(\sum_{k=1}^{j-k}f_{v,k} ...

  4. 【NOIP2016提高A组五校联考4】ksum

    题目 分析 发现,当子段[l,r]被取了出来,那么[l-1,r].[l,r+1]一定也被取了出来. 那么,首先将[1,n]放入大顶堆,每次将堆顶的子段[l,r]取出来,因为它是堆顶,所以一定是最大的子 ...

  5. NOIP2016提高A组五校联考3总结

    第一题,本来一开始就想到了数位dp,结果脑残地打了十几个转移方程,总是调试不出来,一气之下放弃了. 调第一题几乎调了整节比赛,第二第三都没它. 第二题连边找联通块. 第三题题解都打了三页,看都不想看. ...

  6. 【NOIP2016提高A组五校联考2】tree

    题目 给一棵n 个结点的有根树,结点由1 到n 标号,根结点的标号为1.每个结点上有一个物品,第i 个结点上的物品价值为vi. 你需要从所有结点中选出若干个结点,使得对于任意一个被选中的结点,其到根的 ...

  7. 【NOIP2016提高A组五校联考2】running

    题目 小胡同学是个热爱运动的好孩子. 每天晚上,小胡都会去操场上跑步,学校的操场可以看成一个由n个格子排成的一个环形,格子按照顺时针顺序从0 到n- 1 标号. 小胡观察到有m 个同学在跑步,最开始每 ...

  8. 【NOIP2016提高A组五校联考2】string

    题目 给出一个长度为n, 由小写英文字母组成的字符串S, 求在所有由小写英文字母组成且长度为n 且恰好有k 位与S 不同的字符串中,给定字符串T 按照字典序排在第几位. 由于答案可能很大,模10^9 ...

  9. NOIP2016提高A组五校联考2总结

    第一题用组合数各种乱搞,其恶心程度不一般.搞了很久才调对,比赛上出了一点bug,只拿了30分. 第二题我乱搞得出个错误的结论,本来自信满满60分,结果爆零了. 第三题,树形dp,在一开始的时候想到了, ...

随机推荐

  1. DataLakeAnalytics: 解析IP地址对应的国家城市地址的能力

    Data Lake Analytics 作为云上数据处理的枢纽,最近加入了通过IP地址查找对应的国家.省份.城市.ISP的函数, 今天带大家体验一下. 函数详细介绍 本次一共添加了下面这些函数: ip ...

  2. HZOI20190906模拟38 金,斯诺,赤

    题面:https://www.cnblogs.com/Juve/articles/11479415.html T1:高精度gcd,其实不用写高精度取模,gcd还有一种求法 int gcd(int a, ...

  3. session中load()跟get()的区别

    1.相同点:Session.load/get方法均可以根据指定的实体类和id从数据库读取记录,并返回与之对应的实体对象. 2.区别在于: (1)如果未能发现符合条件的记录,get方法返回null,而l ...

  4. Java SE、Java EE、Java ME三者的区别

    1. Java SE(Java Platform,Standard Edition).Java SE 以前称为 J2SE.它允许开发和部署在桌面.服务器.嵌入式环境和实时环境中使用的 Java 应用程 ...

  5. camtasia Studio 7 的使用

    最近领导给了个任务,要把我们的三维应用功能做个视频,好带出去宣传.通过搜索,发现大家都说camtasia Studio好用,很快在网上找到了,与大家分享链接: http://pan.baidu.com ...

  6. 转: V4L2驱动程序架构

    源地址:http://blog.chinaunix.net/uid-26101960-id-3297657.html 1 V4L2简介 video4linux2(V4L2)是Linux内核中关于视频设 ...

  7. linux命令统计文件中某个字符串出现的次数

    1.使用grep linux grep命令在我的随笔linux分类里有过简单的介绍,这里就只简单的介绍下使用grep命令统计某个文件这某个字符串出现的次数,首先介绍grep命令的几个参数,详细参数请自 ...

  8. 009-python一些问题整理

    1. Python中的 // 与 / 的区别 " / "  表示浮点数除法,返回浮点结果 >>> 90/30 3.0 " // " 表示整数除 ...

  9. System.Timer.Timer的一个安全类

    class SafeTimer { private static System.Timers.Timer timer; public static Action DoWork; private sta ...

  10. 在银行业中,BP是指什么?

    基点 Basis Point(BP)债券和票据利率改变量的度量单位.一个基点等于0.01个百分点,即0.01%,因此,100个基点等于1%.[例]一浮动利率债券的利率可能比LIBOR高10个基点,10 ...