PyGSP
# PyGSP (0.5.1)
# matplotlib (3.1.2)
# networkx (2.4)
# numpy (1.17.4) from pygsp import graphs, filters
import matplotlib.pyplot as plt
G = graphs.Logo()
G.estimate_lmax()
g = filters.Heat(G, tau=100)
import numpy as np
DELTAS = [20, 30, 1090]
s = np.zeros(G.N)
s[DELTAS] = 1
s = g.filter(s)
G.plot_signal(s, highlight=DELTAS, backend='matplotlib')
plt.show()
###########################################################
import numpy as np
import matplotlib.pyplot as plt
from pygsp import graphs, filters, plotting plotting.BACKEND = 'matplotlib'
plt.rcParams['figure.figsize'] = (10, 5) rs = np.random.RandomState(42) # Reproducible results.
W = rs.uniform(size=(30, 30)) # Full graph.
W[W < 0.93] = 0 # Sparse graph.
W = W + W.T # Symmetric graph.
np.fill_diagonal(W, 0) # No self-loops.
G = graphs.Graph(W)
print('{} nodes, {} edges'.format(G.N, G.Ne)) connected_flg = G.is_connected()
directed_flg = G.is_directed() # We can retrieve our weight matrix, which is stored in a sparse format.
retrieve_flg = (G.W == W).all()
W_type = type(G.W) # The graph Laplacian (combinatorial by default).
# Laplacian
G.L.shape#(30, 30) # We can also compute and get the graph Fourier basis
# the Fourier basis
G.compute_fourier_basis()
G.U.shape# (30, 30) # the graph differential operator, useful to e.g. compute the gradient or smoothness of a signal.
# the differential operator
G.compute_differential_operator()
G.D.shape#(60, 30) # To be able to plot a graph, we need to embed its nodes in a 2D or 3D space.
# Let’s set some coordinates with pygsp.graphs.Graph.set_coordinates() and plot our graph.
G.set_coordinates('ring2D')
G.plot()
plt.show()
##############################################################
# As in classical signal processing, the Fourier transform
# plays a central role in graph signal processing. Getting
# the Fourier basis is however computationally intensive as
# it needs to fully diagonalize the Laplacian. While it can
# be used to filter signals on graphs, a better alternative
# is to use one of the fast approximations (see pygsp.filters.Filter.filter()).
# Let’s plot the second and third eigenvectors (the first is constant).
G = graphs.Logo()
G.compute_fourier_basis()
fig, axes = plt.subplots(1, 2, figsize=(10, 3))
for i, ax in enumerate(axes):
G.plot_signal(G.U[:, i+1], vertex_size=30, ax=ax)
_ = ax.set_title('Eigenvector {}'.format(i+2))
ax.set_axis_off()
fig.tight_layout()
plt.show() G2 = graphs.Ring(N=50)
G2.compute_fourier_basis()
fig, axes = plt.subplots(1, 2, figsize=(10, 4))
G2.plot_signal(G2.U[:, 4], ax=axes[0])
G2.set_coordinates('line1D')
G2.plot_signal(G2.U[:, 1:4], ax=axes[1])
fig.tight_layout()
plt.show()
###############################################################
# Filters
# To filter signals on graphs, we need to define filters.
# They are represented in the toolbox by the pygsp.filters.Filter class.
# Filters are usually defined in the spectral domain.
# let’s define and plot that low-pass filter:
tau = 1
def g(x):
return 1. / (1. + tau * x)
g = filters.Filter(G, g)
fig, ax = plt.subplots()
g.plot(plot_eigenvalues=True, ax=ax)
_ = ax.set_title('Filter frequency response')
plt.show()
###############################################################
# Let’s create a graph signal and add some random noise.
# Graph signal: each letter gets a different value + additive noise.
s = np.zeros(G.N)
s[G.info['idx_g']-1] = -1
s[G.info['idx_s']-1] = 0
s[G.info['idx_p']-1] = 1
G.plot()
plt.show()
s += rs.uniform(-0.5, 0.5, size=G.N)
# We can now try to denoise that signal by filtering it with the above defined low-pass filter.
s2 = g.filter(s)
fig, axes = plt.subplots(1, 2, figsize=(10, 3))
G.plot_signal(s, vertex_size=30, ax=axes[0])
_ = axes[0].set_title('Noisy signal')
axes[0].set_axis_off()
G.plot_signal(s2, vertex_size=30, ax=axes[1])
_ = axes[1].set_title('Cleaned signal')
axes[1].set_axis_off()
fig.tight_layout()
plt.show()
# While the noise is largely removed thanks to the filter, some energy is diffused between the letters.
###############################################################
###############################################################
# Next contents will show you how to easily construct a wavelet frame,
# a kind of filter bank, and apply it to a signal.
# This tutorial will walk you into computing the wavelet coefficients
# of a graph, visualizing filters in the vertex domain, and using the
# wavelets to estimate the curvature of a 3D shape.
###############################################################
# spectral graph wavelets
# 显示3d必须导入 from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
from pygsp import graphs, filters, plotting, optimization, utils
from mpl_toolkits.mplot3d import Axes3D G = graphs.Bunny()
# estimate the largest eigenvalue G.lmax
lamida_max_L = G.estimate_lmax() # Simple filtering: heat diffusion
taus = [10, 25, 50]
g = filters.Heat(G, taus)
# create a signal as a Kronecker delta located on one vertex,
# e.g. the vertex 20. That signal is our heat source.
s = np.zeros(G.N)
DELTA = 20
s[DELTA] = 1
# We can now simulate heat diffusion by filtering our signal s with each of our heat kernels.
s = g.filter(s, method='chebyshev')
# finally plot the filtered signal showing heat diffusion at different scales.
fig = plt.figure(figsize=(10, 3))
num_fitter = g.Nf
for i in range(num_fitter):
# 只要Axes3D导入存在就行 from mpl_toolkits.mplot3d import Axes3D
ax = fig.add_subplot(1, num_fitter, i + 1, projection='3d')
G.plot_signal(s[:, i], colorbar=True, ax=ax)
title = r'Heat diffusion, $\tau={}$'.format(taus[i])
_ = ax.set_title(title)
ax.set_axis_off()
fig.tight_layout()
plt.show() # We can visualize the atoms as we did with the heat kernel,
# by filtering a Kronecker delta placed at one specific vertex.
s = g.localize(DELTA)
fig = plt.figure(figsize=(10, 2.5))
for i in range(num_fitter):
ax = fig.add_subplot(1, 3, i + 1, projection='3d')
G.plot_signal(s[:, i], ax=ax)
_ = ax.set_title('Wavelet {}'.format(i + 1))
ax.set_axis_off()
fig.tight_layout()
plt.show()
###################################################################
# Curvature estimation
# As a last and more applied example, let us try to estimate
# the curvature of the underlying 3D model by only using spectral
# filtering on the nearest-neighbor graph formed by its point cloud. # let us try to estimate the curvature of the underlying 3D model
# by only using spectral filtering on the nearest-neighbor graph formed by its point cloud.
# Doing so gives us a 3-dimensional signal:
'''
s = G.coords
s = g.filter(s)
# The curvature is then estimated by taking the ℓ1 or ℓ2 norm across the 3D position.
s = np.linalg.norm(s, ord=2, axis=1)
fig = plt.figure(figsize=(10, 7))
for i in range(4):
ax = fig.add_subplot(2, 2, i + 1, projection='3d')
G.plot_signal(s[:, i], ax=ax)
title = 'Curvature estimation (scale {})'.format(i + 1)
_ = ax.set_title(title)
ax.set_axis_off()
fig.tight_layout()
plt.show()
'''
###################################################################
# The pygsp.filters.Filter.localize() method can be used to
# visualize a filter in the vertex domain instead of doing it manually.
# localize(i, **kwargs)# Localize the kernels at a node (to visualize them).
# i: Index of the node where to localize the kernel.
import matplotlib
N = 20
DELTA = N//2 * (N+1)
G = graphs.Grid2d(N)
G.estimate_lmax()
g = filters.Heat(G, 100)
s = g.localize(DELTA)
G.plot_signal(s, highlight=DELTA)
plt.show()
#############################################
# Visualizing wavelets atoms
# Let’s now replace the Heat filter by a filter bank of wavelets.
# We can create a filter bank using one of the predefined filters,
# such as pygsp.filters.MexicanHat to design a set of Mexican hat wavelets.
g = filters.MexicanHat(G, Nf=6) # Nf = 6 filters in the filter bank.
fig, ax = plt.subplots(figsize=(10, 5))
g.plot(ax=ax)
_ = ax.set_title('Filter bank of mexican hat wavelets')
plt.show() # A better coverage could be obtained by adapting the filter bank with
# pygsp.filters.WarpedTranslates or by using another filter bank like pygsp.filters.Itersine.
# pygsp.filters.Itersine(G, Nf=6, overlap=2.0, **kwargs)
# Create an itersine half overlap filter bank of Nf filters. Going from 0 to lambda_max. # Filter bank’s representation in Fourier and time (ring graph) domains.
import matplotlib.pyplot as plt
G = graphs.Ring(N=20)
G.estimate_lmax()
G.set_coordinates('line1D')
g = filters.HalfCosine(G)
s = g.localize(G.N // 2)
fig, axes = plt.subplots(1, 2)
g.plot(ax=axes[0])
G.plot_signal(s, ax=axes[1])
plt.show() # class Meyer(Filter):# Use of this kernel for SGWT proposed by
# Nora Leonardi and Dimitri Van De Ville in :cite:`leonardi2011wavelet`.
import matplotlib.pyplot as plt
G = graphs.Ring(N=20)
G.estimate_lmax()
G.set_coordinates('line1D')
g = filters.Meyer(G)
s = g.localize(G.N // 2)
fig, axes = plt.subplots(1, 2)
g.plot(ax=axes[0])
G.plot_signal(s, ax=axes[1])
plt.show() #########################
import numpy as np
from pygsp import graphs, plotting # Create a random sensor graph
G = graphs.Sensor(N=256, distribute=True, seed=42)
G.compute_fourier_basis()
# Create label signal
label_signal = np.copysign(np.ones(G.N), G.U[:, 3])
G.plot_signal(label_signal)
plt.show()
# The up figure shows a plot of the original label signal, that we wish to recover, on the graph. rs = np.random.RandomState(42)
# Create the mask
M = rs.rand(G.N)
M = (M > 0.6).astype(float) # Probability of having no label on a vertex.
# Applying the mask to the data
sigma = 0.1
subsampled_noisy_label_signal = M * (label_signal + sigma * rs.standard_normal(G.N))
G.plot_signal(subsampled_noisy_label_signal)
plt.show()
# The up figure shows the label signal on the graph after the application of the subsampling mask and the addition of noise. The label of more than half of the vertices has been set to 00.

  

PyGSP的更多相关文章

  1. Graph machine learning 工具

    OGB: Open Graph Benchmark https://ogb.stanford.edu/ https://github.com/snap-stanford/ogb OGB is a co ...

  2. graph处理工具

    仅作为记录笔记,完善中...................... 1       PyGSP https://pygsp.readthedocs.io/en/stable/index.html ht ...

随机推荐

  1. A Funny Game——打表&&找规律

    题目 n枚硬币排成一个圈.Alice和Bob轮流从中取一枚或两枚硬币.不过,取两枚时,所取的两枚硬币必须是连续的.硬币取走之后留下空格,相隔空格的硬币视为不连续.Alice开始先取,取走最后一枚硬币的 ...

  2. 51nod1814 Clarke and string

    [传送门] 直接想最暴力的做法就是正解了.每次询问都把两个串的回文树建出来,然后再两棵树上同时dfs,经过相同的节点答案就加一.遇到一个不存在的就退出.再把询问记忆化一下就OK了.复杂度是 $O(n ...

  3. XSS Challenges 练习(1-10)

    这几天对XSS Challenges平台进行了练习,网上也有一些相应的解答博客,但是写得都差不多,我觉得可以试一下从怎么做这种题的角度出发去思考问题. 第一题:http://xss-quiz.int2 ...

  4. Numpy | 15 数学函数

    NumPy 包含大量的各种数学运算的函数,包括三角函数,算术运算的函数,复数处理函数等. 三角函数 NumPy 提供了标准的三角函数:sin().cos().tan(). import numpy a ...

  5. 正睿2019省选附加赛 Day10 (这篇其实已经都咕咕了...)

    目录 2019.3.13 A.算算算(二项式定理 斯特林数) B.买买买 C.树树树 2019.3.13 比赛链接 A.算算算(二项式定理 斯特林数) 题目链接 \(x^k\)可以用二项式定理展开,需 ...

  6. 服务器使用ssh秘钥登录并禁止密码登录

    问题: 最近在登录服务器的时候,每次都会有提示999+ falied login等字眼,意思就是自己的服务器密码正在被人暴力破解.想象以下,别人有了你的服务器的root登录密码,那么就可以对你的服务器 ...

  7. 集合类 collection接口 Set

    Collection接口的另外一种实现为Set集合,主要有两种实现方式一种为HashSet另一种为TreeSet,两种实现都依赖与对应的Map实现类. 代码如下: public HashSet() { ...

  8. shell整数与小数比较,小数之间比较的方法【转】

    在shell脚本中,无法对浮点数进行比较,如: max=0.1 min=0.01 if [ "$max" -gt "$min" ] then echo &quo ...

  9. 解决Linux系统下面javamelody图片中文乱码问题

    从windows系统中,copy了C:\Windows\Fonts\msyh.ttc和msyhbd.ttc 2个文件到 服务器的%JAVA_HOME%\jre\lib\fonts\fallback 目 ...

  10. ImportError: this is MySQLdb version (1, 2, 5, 'final', 1), but _mysql is version (1, 4, 4, 'final', 0)

    (flask-demo) ➜ flask-demo git:(master) ✗ pip install mysqlclient==1.2.5 DEPRECATION: Python 2.7 will ...