[LeetCode] 802. Find Eventual Safe States 找到最终的安全状态
In a directed graph, we start at some node and every turn, walk along a directed edge of the graph. If we reach a node that is terminal (that is, it has no outgoing directed edges), we stop.
Now, say our starting node is eventually safe if and only if we must eventually walk to a terminal node. More specifically, there exists a natural number K
so that for any choice of where to walk, we must have stopped at a terminal node in less than K
steps.
Which nodes are eventually safe? Return them as an array in sorted order.
The directed graph has N
nodes with labels 0, 1, ..., N-1
, where N
is the length of graph
. The graph is given in the following form: graph[i]
is a list of labels j
such that (i, j)
is a directed edge of the graph.
Example:
Input: graph = [[1,2],[2,3],[5],[0],[5],[],[]]
Output: [2,4,5,6]
Here is a diagram of the above graph.
Note:
graph
will have length at most10000
.- The number of edges in the graph will not exceed
32000
. - Each
graph[i]
will be a sorted list of different integers, chosen within the range[0, graph.length - 1]
.
在一个有向图中,如果从一个节点出发走过很多步之后到达了终点(出度为0的节点,无路可走了),则认为这个节点是最终安全的节点。如果根本停不下来,那就是在一个环上,就是不安全节点。要在自然数K步内停止,到达安全节点,返回满足要求的排序好的所有安全节点的索引值。实质是在一个有向图中找出不在环路上的节点。
解法:DFS,可采用染色的方法对节点进行分类:0表示该结点还没有被访问;1表示已经被访问过了,并且发现是safe的;2表示被访问过了,但发现是unsafe的。我们采用DFS的方法进行遍历,并返回该结点是否是safe的:如果发现它已经被访问过了,则直接返回是否是safe的标记;否则就首先将其标记为unsafe的,然后进行DFS搜索(此时该结点会处在DFS的路径上,所以后面的DFS一旦到了该结点,就会被认为是形成了环,所以直接返回false)。当整个DFS的搜索都已经结束,并且都没有发现该结点处在环上时,说明该结点是safe的,所以此时将其最终标记为safe即可。空间复杂度是O(n),时间复杂度是O(n)
解法2: 迭代,记录下每个节点的出度,如果出度为0那必然是环路外的节点,然后将该点以及指向该点的边删除,继续寻找出度为0的点
class Solution {
public List<Integer> eventualSafeNodes(int[][] graph) {
List<Integer> res = new ArrayList<>();
if(graph == null || graph.length == 0) return res; int nodeCount = graph.length;
int[] color = new int[nodeCount]; for(int i = 0;i < nodeCount;i++){
if(dfs(graph, i, color)) res.add(i);
} return res;
}
public boolean dfs(int[][] graph, int start, int[] color){
if(color[start] != 0) return color[start] == 1; color[start] = 2;
for(int newNode : graph[start]){
if(!dfs(graph, newNode, color)) return false;
}
color[start] = 1; return true;
}
}
Python:
def eventualSafeNodes(self, graph):
"""
:type graph: List[List[int]]
:rtype: List[int]
"""
n = len(graph)
out_degree = collections.defaultdict(int)
in_nodes = collections.defaultdict(list)
queue = []
ret = []
for i in range(n):
out_degree[i] = len(graph[i])
if out_degree[i]==0:
queue.append(i)
for j in graph[i]:
in_nodes[j].append(i)
while queue:
term_node = queue.pop(0)
ret.append(term_node)
for in_node in in_nodes[term_node]:
out_degree[in_node] -= 1
if out_degree[in_node]==0:
queue.append(in_node)
return sorted(ret)
Python:
# Time: O(|V| + |E|)
# Space: O(|V|)
import collections class Solution(object):
def eventualSafeNodes(self, graph):
"""
:type graph: List[List[int]]
:rtype: List[int]
"""
WHITE, GRAY, BLACK = 0, 1, 2 def dfs(graph, node, lookup):
if lookup[node] != WHITE:
return lookup[node] == BLACK
lookup[node] = GRAY
for child in graph[node]:
if lookup[child] == BLACK:
continue
if lookup[child] == GRAY or \
not dfs(graph, child, lookup):
return False
lookup[node] = BLACK
return True lookup = collections.defaultdict(int)
return filter(lambda node: dfs(graph, node, lookup), xrange(len(graph)))
Python:
class Solution(object):
def eventualSafeNodes(self, graph):
"""
:type graph: List[List[int]]
:rtype: List[int]
"""
if not graph: return [] n = len(graph)
# 用字段存储每个节点的父节点
d = {u:[] for u in range(n)}
degree = [0] * n
for u in range(n):
for v in graph[u]:
d[v].append(u)
degree[u] = len(graph[u]) Q = [u for u in range(n) if degree[u]==0]
res = []
while Q:
node = Q.pop()
res.append(node)
for nodes in d[node]:
degree[nodes] -= 1
if degree[nodes] == 0:
Q.append(nodes)
return sorted(res)
C++:
class Solution {
public:
vector<int> eventualSafeNodes(vector<vector<int>>& graph) {
vector<int> res;
if (graph.size() == 0) {
return res;
}
int size = graph.size();
vector<int> color(size, 0); // 0: not visited; 1: safe; 2: unsafe.
for (int i = 0; i < size; ++i) {
if (dfs(graph, i, color)) { // the i-th node is safe
res.push_back(i);
}
}
return res;
}
private:
bool dfs(vector<vector<int>> &graph, int start, vector<int> &color) {
if (color[start] != 0) {
return color[start] == 1;
}
color[start] = 2; // mark it as unsafe because it is on the path
for (int next : graph[start]) {
if (!dfs(graph, next, color)) {
return false;
}
}
color[start] = 1; // mark it as safe because no loop is found
return true;
}
};
All LeetCode Questions List 题目汇总
[LeetCode] 802. Find Eventual Safe States 找到最终的安全状态的更多相关文章
- [LeetCode] Find Eventual Safe States 找到最终的安全状态
In a directed graph, we start at some node and every turn, walk along a directed edge of the graph. ...
- LeetCode 802. Find Eventual Safe States
原题链接在这里:https://leetcode.com/problems/find-eventual-safe-states/ 题目: In a directed graph, we start a ...
- 【LeetCode】802. Find Eventual Safe States 解题报告(Python)
[LeetCode]802. Find Eventual Safe States 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemi ...
- LC 802. Find Eventual Safe States
In a directed graph, we start at some node and every turn, walk along a directed edge of the graph. ...
- 【leetcode】802. Find Eventual Safe States
题目如下: 解题思路:本题大多数人采用DFS的方法,这里我用的是另一种方法.我的思路是建立一次初始值为空的safe数组,然后遍历graph,找到graph[i]中所有元素都在safe中的元素,把i加入 ...
- 802. Find Eventual Safe States
https://leetcode.com/problems/find-eventual-safe-states/description/ class Solution { public: vector ...
- Java实现 LeetCode 802 找到最终的安全状态 (DFS)
802. 找到最终的安全状态 在有向图中, 我们从某个节点和每个转向处开始, 沿着图的有向边走. 如果我们到达的节点是终点 (即它没有连出的有向边), 我们停止. 现在, 如果我们最后能走到终点,那么 ...
- [Swift]LeetCode802. 找到最终的安全状态 | Find Eventual Safe States
In a directed graph, we start at some node and every turn, walk along a directed edge of the graph. ...
- LeetCode 277. Find the Celebrity (找到明星)$
Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist o ...
随机推荐
- Codeforces D. Intercity Travelling(区间组合)
题目描述: D. Intercity Travelling time limit per test 1.5 seconds memory limit per test 256 megabytes in ...
- mysql类似to_char()to_date()函数mysql日期和字符相互转换方法date_f
mysql 类似to_char() to_date()函数mysql日期和字符相互转换方法 date_format(date,'%Y-%m-%d') -------------->oracle中 ...
- CentOS6.9下手动编译并安装Python3.7.0
CentOS6.9默认安装的python版本为2.6.6,若想安装python3以上版本,只能手工编译安装 下面介绍Python-3.7.0版本的手动编译并安装的步骤 1.下载Python-3.7.0 ...
- 【转】libgo
原文:https://blog.csdn.net/libaineu2004/article/details/80554870 ------------------------------------- ...
- CodeForces - 95E: Lucky Country (多重背包)
pro:给定N个点,M条边,现在你要给一些连通块加边,使得至少存在一个连通块的大小是由4和7组成的数字.问至少加边数量. sol: 看似一个很难的题目. 首先不要想太难了,还是应该想能不能用背包做. ...
- 【Servlet】基于Jsp的微信Oauth2认证
作者:yongh701 挂载到微信服务器上的应用程序,能够通过微信Oauth2认证,能够抓取到用户的微信信息,当然,你首先要通过微信的帐号资质审核. 一.基本思想 二.基本过程 1.登陆微信的公众平台 ...
- LeetCode(数据库):分数排名
,)); Truncate table Scores; ', '3.5'); ', '3.65'); ', '4.0'); ', '3.85'); ', '4.0'); ', '3.65'); 编写一 ...
- 5 Successful Business Models for Web-Based Open-Source Projects
https://handsontable.com/blog/articles/2016/3/5-successful-business-models-for-web-based-open-source ...
- LeetCode 1061. Lexicographically Smallest Equivalent String
原题链接在这里:https://leetcode.com/problems/lexicographically-smallest-equivalent-string/ 题目: Given string ...
- 数组(定义、遍历、冒泡排序、合并和Join 方法)
一.数组的定义 1.理解:数组指一组数据,有序的数据,可以一次性存储多个数据,将多个元素(通常统一类型)按照一定的顺序排列放到一个集合里 2.通过构造函数创建数组: var 数组名=new Arrar ...