In a directed graph, we start at some node and every turn, walk along a directed edge of the graph.  If we reach a node that is terminal (that is, it has no outgoing directed edges), we stop.

Now, say our starting node is eventually safe if and only if we must eventually walk to a terminal node.  More specifically, there exists a natural number K so that for any choice of where to walk, we must have stopped at a terminal node in less than K steps.

Which nodes are eventually safe?  Return them as an array in sorted order.

The directed graph has N nodes with labels 0, 1, ..., N-1, where N is the length of graph.  The graph is given in the following form: graph[i] is a list of labels j such that (i, j) is a directed edge of the graph.

Example:
Input: graph = [[1,2],[2,3],[5],[0],[5],[],[]]
Output: [2,4,5,6]
Here is a diagram of the above graph.

Note:

  • graph will have length at most 10000.
  • The number of edges in the graph will not exceed 32000.
  • Each graph[i] will be a sorted list of different integers, chosen within the range [0, graph.length - 1].

在一个有向图中,如果从一个节点出发走过很多步之后到达了终点(出度为0的节点,无路可走了),则认为这个节点是最终安全的节点。如果根本停不下来,那就是在一个环上,就是不安全节点。要在自然数K步内停止,到达安全节点,返回满足要求的排序好的所有安全节点的索引值。实质是在一个有向图中找出不在环路上的节点。

解法:DFS,可采用染色的方法对节点进行分类:0表示该结点还没有被访问;1表示已经被访问过了,并且发现是safe的;2表示被访问过了,但发现是unsafe的。我们采用DFS的方法进行遍历,并返回该结点是否是safe的:如果发现它已经被访问过了,则直接返回是否是safe的标记;否则就首先将其标记为unsafe的,然后进行DFS搜索(此时该结点会处在DFS的路径上,所以后面的DFS一旦到了该结点,就会被认为是形成了环,所以直接返回false)。当整个DFS的搜索都已经结束,并且都没有发现该结点处在环上时,说明该结点是safe的,所以此时将其最终标记为safe即可。空间复杂度是O(n),时间复杂度是O(n)

解法2: 迭代,记录下每个节点的出度,如果出度为0那必然是环路外的节点,然后将该点以及指向该点的边删除,继续寻找出度为0的点

class Solution {
public List<Integer> eventualSafeNodes(int[][] graph) {
List<Integer> res = new ArrayList<>();
if(graph == null || graph.length == 0) return res; int nodeCount = graph.length;
int[] color = new int[nodeCount]; for(int i = 0;i < nodeCount;i++){
if(dfs(graph, i, color)) res.add(i);
} return res;
}
public boolean dfs(int[][] graph, int start, int[] color){
if(color[start] != 0) return color[start] == 1; color[start] = 2;
for(int newNode : graph[start]){
if(!dfs(graph, newNode, color)) return false;
}
color[start] = 1; return true;
}
}

Python:

def eventualSafeNodes(self, graph):
"""
:type graph: List[List[int]]
:rtype: List[int]
"""
n = len(graph)
out_degree = collections.defaultdict(int)
in_nodes = collections.defaultdict(list)
queue = []
ret = []
for i in range(n):
out_degree[i] = len(graph[i])
if out_degree[i]==0:
queue.append(i)
for j in graph[i]:
in_nodes[j].append(i)
while queue:
term_node = queue.pop(0)
ret.append(term_node)
for in_node in in_nodes[term_node]:
out_degree[in_node] -= 1
if out_degree[in_node]==0:
queue.append(in_node)
return sorted(ret)

Python:

# Time:  O(|V| + |E|)
# Space: O(|V|)
import collections class Solution(object):
def eventualSafeNodes(self, graph):
"""
:type graph: List[List[int]]
:rtype: List[int]
"""
WHITE, GRAY, BLACK = 0, 1, 2 def dfs(graph, node, lookup):
if lookup[node] != WHITE:
return lookup[node] == BLACK
lookup[node] = GRAY
for child in graph[node]:
if lookup[child] == BLACK:
continue
if lookup[child] == GRAY or \
not dfs(graph, child, lookup):
return False
lookup[node] = BLACK
return True lookup = collections.defaultdict(int)
return filter(lambda node: dfs(graph, node, lookup), xrange(len(graph)))

Python:

class Solution(object):
def eventualSafeNodes(self, graph):
"""
:type graph: List[List[int]]
:rtype: List[int]
"""
if not graph: return [] n = len(graph)
# 用字段存储每个节点的父节点
d = {u:[] for u in range(n)}
degree = [0] * n
for u in range(n):
for v in graph[u]:
d[v].append(u)
degree[u] = len(graph[u]) Q = [u for u in range(n) if degree[u]==0]
res = []
while Q:
node = Q.pop()
res.append(node)
for nodes in d[node]:
degree[nodes] -= 1
if degree[nodes] == 0:
Q.append(nodes)
return sorted(res) 

C++:

class Solution {
public:
vector<int> eventualSafeNodes(vector<vector<int>>& graph) {
vector<int> res;
if (graph.size() == 0) {
return res;
}
int size = graph.size();
vector<int> color(size, 0); // 0: not visited; 1: safe; 2: unsafe.
for (int i = 0; i < size; ++i) {
if (dfs(graph, i, color)) { // the i-th node is safe
res.push_back(i);
}
}
return res;
}
private:
bool dfs(vector<vector<int>> &graph, int start, vector<int> &color) {
if (color[start] != 0) {
return color[start] == 1;
}
color[start] = 2; // mark it as unsafe because it is on the path
for (int next : graph[start]) {
if (!dfs(graph, next, color)) {
return false;
}
}
color[start] = 1; // mark it as safe because no loop is found
return true;
}
};

  

All LeetCode Questions List 题目汇总

[LeetCode] 802. Find Eventual Safe States 找到最终的安全状态的更多相关文章

  1. [LeetCode] Find Eventual Safe States 找到最终的安全状态

    In a directed graph, we start at some node and every turn, walk along a directed edge of the graph.  ...

  2. LeetCode 802. Find Eventual Safe States

    原题链接在这里:https://leetcode.com/problems/find-eventual-safe-states/ 题目: In a directed graph, we start a ...

  3. 【LeetCode】802. Find Eventual Safe States 解题报告(Python)

    [LeetCode]802. Find Eventual Safe States 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemi ...

  4. LC 802. Find Eventual Safe States

    In a directed graph, we start at some node and every turn, walk along a directed edge of the graph.  ...

  5. 【leetcode】802. Find Eventual Safe States

    题目如下: 解题思路:本题大多数人采用DFS的方法,这里我用的是另一种方法.我的思路是建立一次初始值为空的safe数组,然后遍历graph,找到graph[i]中所有元素都在safe中的元素,把i加入 ...

  6. 802. Find Eventual Safe States

    https://leetcode.com/problems/find-eventual-safe-states/description/ class Solution { public: vector ...

  7. Java实现 LeetCode 802 找到最终的安全状态 (DFS)

    802. 找到最终的安全状态 在有向图中, 我们从某个节点和每个转向处开始, 沿着图的有向边走. 如果我们到达的节点是终点 (即它没有连出的有向边), 我们停止. 现在, 如果我们最后能走到终点,那么 ...

  8. [Swift]LeetCode802. 找到最终的安全状态 | Find Eventual Safe States

    In a directed graph, we start at some node and every turn, walk along a directed edge of the graph.  ...

  9. LeetCode 277. Find the Celebrity (找到明星)$

    Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist o ...

随机推荐

  1. 小程序之程序构造器App()

    onLaunch / onShow / onHide 三个回调是App实例的生命周期函数 “小程序”指的是产品层面的程序,而“程序”指的是代码层面的程序实例,为了避免误解,下文采用App来代替代码层面 ...

  2. 牛客1024B 石头游戏

    题目描述 石头游戏在一个 \(n\) 行 \(m\) 列 \((1\leq n,m \leq 8)(1≤n,m≤8)\) 的网格上进行,每个格子对应一种操作序列,操作序列至多有10种,分别用0~9这1 ...

  3. MP4文件批量转码成MP3

    需求背景:最近为了学python爬虫,在论坛里找了不少视频教程,非常棒.但有时看视频不方便,就想着能否把视频批量转码成音频,这样在乘坐地铁公交的时候也能学习了. 解决路径:有了需求,我首先在论坛里搜了 ...

  4. Generator 函数和for...of循环,实现斐波那契数列

    function* fib () { let [prev, cur] = [0,1] for (;;) { yield cur [prev, cur] = [cur, cur+prev] } } fo ...

  5. C#笔记2 —常量

    基本上和c语言中的常量类似,但有区别 在const关键字的基础上,添加了readonly,readonly关键字在笔记中说明. 常量是固定值,程序执行期间不会改变.常量可以是任何基本数据类型,比如整数 ...

  6. Java 多线程实战

    Java多线程 public class ThreadTest { public static void main(String[] args) throws InterruptedException ...

  7. UVa11542Squre——异或方程组&&高斯消元法

    题意 给出 $n$ 个整数,从中选出1个或多个,使得选出的整数乘积是完全平方数.一共有多少种选法?($1 \leq n \leq 100$,$1 \leq a_i \leq 10^{15}$ 且不含大 ...

  8. learning java 使用WatchService监控文件变化

    import java.io.IOException; import java.nio.file.*; public class WatchServiceTest { public static vo ...

  9. 错误: 找不到或无法加载主类 Welcome.java

    问题原因: 不需要带.java

  10. 基于python的学生管理系统(含数据库版本)

    这次支持连接到后台的数据库,直接和数据库进行交互,实现基本的增删查改 #!/usr/bin/python3 # coding=utf-8 """ ************ ...