目录:

  1. 停用词 —— stopwords
  2. 介词 —— prepositions —— part of speech
  3. Named Entity Recognition (NER)  3.1 Stanford NER
      3.2 spaCy
      3.3 NLTK
  4. 句子中单词提取(Word extraction)

1. 停用词(stopwords)

ref: Removing stop words with NLTK in Python

ref: Remove Stop Words

import nltk
# nltk.download('stopwords')
from nltk.corpus import stopwords
print(stopwords.words('english')) output:
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"]

2. 介词(prepositions, part of speech)

ref: How do I remove verbs, prepositions, conjunctions etc from my text? [closed]

ref: Alphabetical list of part-of-speech tags used in the Penn Treebank Project:

>>> import nltk
>>> sentence = """At eight o'clock on Thursday morning
... Arthur didn't feel very good."""
>>> tokens = nltk.word_tokenize(sentence)
>>> tokens
['At', 'eight', "o'clock", 'on', 'Thursday', 'morning',
'Arthur', 'did', "n't", 'feel', 'very', 'good', '.']
>>> tagged = nltk.pos_tag(tokens)
>>> tagged[0:6]
[('At', 'IN'), ('eight', 'CD'), ("o'clock", 'JJ'), ('on', 'IN'),
('Thursday', 'NNP'), ('morning', 'NN')]

3. Named Entity Recognition (NER)

ref: Introduction to Named Entity Recognition

ref: Named Entity Recognition with NLTK and SpaCy

  • Standford NER
  • spaCy
  • NLTK

3.1 Stanford NER

article = '''
Asian shares skidded on Tuesday after a rout in tech stocks put Wall Street to the sword, while a
sharp drop in oil prices and political risks in Europe pushed the dollar to 16-month highs as investors dumped
riskier assets. MSCI’s broadest index of Asia-Pacific shares outside Japan dropped 1.7 percent to a 1-1/2
week trough, with Australian shares sinking 1.6 percent. Japan’s Nikkei dived 3.1 percent led by losses in
electric machinery makers and suppliers of Apple’s iphone parts. Sterling fell to $1.286 after three straight
sessions of losses took it to the lowest since Nov.1 as there were still considerable unresolved issues with the
European Union over Brexit, British Prime Minister Theresa May said on Monday.''' import nltk
from nltk.tag import StanfordNERTagger print('NTLK Version: %s' % nltk.__version__) stanford_ner_tagger = StanfordNERTagger(
r"D:\Twitter Data\Data\NER\stanford-ner-2018-10-16\classifiers\english.muc.7class.distsim.crf.ser.gz",
r"D:\Twitter Data\Data\NER\stanford-ner-2018-10-16\stanford-ner-3.9.2.jar"
) results = stanford_ner_tagger.tag(article.split()) print('Original Sentence: %s' % (article))
for result in results:
tag_value = result[0]
tag_type = result[1]
if tag_type != 'O':
print('Type: %s, Value: %s' % (tag_type, tag_value)) output:
NTLK Version: 3.4
Original Sentence:
Asian shares skidded on Tuesday after a rout in tech stocks put Wall Street to the sword, while a
sharp drop in oil prices and political risks in Europe pushed the dollar to 16-month highs as investors dumped
riskier assets. MSCI’s broadest index of Asia-Pacific shares outside Japan dropped 1.7 percent to a 1-1/2
week trough, with Australian shares sinking 1.6 percent. Japan’s Nikkei dived 3.1 percent led by losses in
electric machinery makers and suppliers of Apple’s iphone parts. Sterling fell to $1.286 after three straight
sessions of losses took it to the lowest since Nov.1 as there were still considerable unresolved issues with the
European Union over Brexit, British Prime Minister Theresa May said on Monday.
Type: DATE, Value: Tuesday
Type: LOCATION, Value: Europe
Type: ORGANIZATION, Value: Asia-Pacific
Type: LOCATION, Value: Japan
Type: PERCENT, Value: 1.7
Type: PERCENT, Value: percent
Type: ORGANIZATION, Value: Nikkei
Type: PERCENT, Value: 3.1
Type: PERCENT, Value: percent
Type: LOCATION, Value: European
Type: LOCATION, Value: Union
Type: PERSON, Value: Theresa
Type: PERSON, Value: May

3.2 spaCy

import spacy
from spacy import displacy
from collections import Counter
import en_core_web_sm
nlp = en_core_web_sm.load()
doc = nlp(article)
for X in doc.ents:
print('Value: %s, Type: %s' % (X.text, X.label_)) output:
Value: Asian, Type: NORP
Value: Tuesday, Type: DATE
Value: Europe, Type: LOC
Value: MSCI’s, Type: ORG
Value: Asia-Pacific, Type: LOC
Value: Japan, Type: GPE
Value: 1.7 percent, Type: PERCENT
Value: 1-1/2, Type: CARDINAL
Value: Australian, Type: NORP
Value: 1.6 percent, Type: PERCENT
Value: Japan, Type: GPE
Value: 3.1 percent, Type: PERCENT
Value: Apple, Type: ORG
Value: 1.286, Type: MONEY
Value: three, Type: CARDINAL
Value: Nov.1, Type: NORP
Value: the
European Union, Type: ORG
Value: Brexit, Type: GPE
Value: British, Type: NORP
Value: Theresa May, Type: PERSON
Value: Monday, Type: DATE

标签含义:https://spacy.io/api/annotation#pos-tagging

Type Description
PERSON People, including fictional.
NORP Nationalities or religious or political groups.
FAC Buildings, airports, highways, bridges, etc.
ORG Companies, agencies, institutions, etc.
GPE Countries, cities, states.
LOC Non-GPE locations, mountain ranges, bodies of water.
PRODUCT Objects, vehicles, foods, etc. (Not services.)
EVENT Named hurricanes, battles, wars, sports events, etc.
WORK_OF_ART Titles of books, songs, etc.
LAW Named documents made into laws.
LANGUAGE Any named language.
DATE Absolute or relative dates or periods.
TIME Times smaller than a day.
PERCENT Percentage, including ”%“.
MONEY Monetary values, including unit.
QUANTITY Measurements, as of weight or distance.
ORDINAL “first”, “second”, etc.
CARDINAL Numerals that do not fall under another type.

3.3 NLTK

import nltk
from nltk import word_tokenize, pos_tag, ne_chunk
nltk.download('words')
nltk.download('averaged_perceptron_tagger')
nltk.download('punkt')
nltk.download('maxent_ne_chunker') def fn_preprocess(art):
art = nltk.word_tokenize(art)
art = nltk.pos_tag(art)
return art
art_processed = fn_preprocess(article)
print(art_processed) output:
[('Asian', 'JJ'), ('shares', 'NNS'), ('skidded', 'VBN'), ('on', 'IN'), ('Tuesday', 'NNP'), ('after', 'IN'), ('a', 'DT'), ('rout', 'NN'), ('in', 'IN'), ('tech', 'JJ'), ('stocks', 'NNS'), ('put', 'VBD'), ('Wall', 'NNP'), ('Street', 'NNP'), ('to', 'TO'), ('the', 'DT'), ('sword', 'NN'), (',', ','), ('while', 'IN'), ('a', 'DT'), ('sharp', 'JJ'), ('drop', 'NN'), ('in', 'IN'), ('oil', 'NN'), ('prices', 'NNS'), ('and', 'CC'), ('political', 'JJ'), ('risks', 'NNS'), ('in', 'IN'), ('Europe', 'NNP'), ('pushed', 'VBD'), ('the', 'DT'), ('dollar', 'NN'), ('to', 'TO'), ('16-month', 'JJ'), ('highs', 'NNS'), ('as', 'IN'), ('investors', 'NNS'), ('dumped', 'VBD'), ('riskier', 'JJR'), ('assets', 'NNS'), ('.', '.'), ('MSCI', 'NNP'), ('’', 'NNP'), ('s', 'VBD'), ('broadest', 'JJS'), ('index', 'NN'), ('of', 'IN'), ('Asia-Pacific', 'NNP'), ('shares', 'NNS'), ('outside', 'IN'), ('Japan', 'NNP'), ('dropped', 'VBD'), ('1.7', 'CD'), ('percent', 'NN'), ('to', 'TO'), ('a', 'DT'), ('1-1/2', 'JJ'), ('week', 'NN'), ('trough', 'NN'), (',', ','), ('with', 'IN'), ('Australian', 'JJ'), ('shares', 'NNS'), ('sinking', 'VBG'), ('1.6', 'CD'), ('percent', 'NN'), ('.', '.'), ('Japan', 'NNP'), ('’', 'NNP'), ('s', 'VBD'), ('Nikkei', 'NNP'), ('dived', 'VBD'), ('3.1', 'CD'), ('percent', 'NN'), ('led', 'VBN'), ('by', 'IN'), ('losses', 'NNS'), ('in', 'IN'), ('electric', 'JJ'), ('machinery', 'NN'), ('makers', 'NNS'), ('and', 'CC'), ('suppliers', 'NNS'), ('of', 'IN'), ('Apple', 'NNP'), ('’', 'NNP'), ('s', 'VBD'), ('iphone', 'NN'), ('parts', 'NNS'), ('.', '.'), ('Sterling', 'NN'), ('fell', 'VBD'), ('to', 'TO'), ('$', '$'), ('1.286', 'CD'), ('after', 'IN'), ('three', 'CD'), ('straight', 'JJ'), ('sessions', 'NNS'), ('of', 'IN'), ('losses', 'NNS'), ('took', 'VBD'), ('it', 'PRP'), ('to', 'TO'), ('the', 'DT'), ('lowest', 'JJS'), ('since', 'IN'), ('Nov.1', 'NNP'), ('as', 'IN'), ('there', 'EX'), ('were', 'VBD'), ('still', 'RB'), ('considerable', 'JJ'), ('unresolved', 'JJ'), ('issues', 'NNS'), ('with', 'IN'), ('the', 'DT'), ('European', 'NNP'), ('Union', 'NNP'), ('over', 'IN'), ('Brexit', 'NNP'), (',', ','), ('British', 'NNP'), ('Prime', 'NNP'), ('Minister', 'NNP'), ('Theresa', 'NNP'), ('May', 'NNP'), ('said', 'VBD'), ('on', 'IN'), ('Monday', 'NNP'), ('.', '.')]

  

4. 句子中单词提取(Word extraction)

ref: An introduction to Bag of Words and how to code it in Python for NLP

import re
def word_extraction(sentence):
ignore = ['a', "the", "is"]
words = re.sub("[^\w]", " ", sentence).split()
cleaned_text = [w.lower() for w in words if w not in ignore]
return cleaned_text a = "alex is. good guy."
print(word_extraction(a)) output:
['alex', 'good', 'guy']

【448】NLP, NER, PoS的更多相关文章

  1. 【数据处理】各门店POS销售导入

    --抓取西部POS数据DELETE FROM POSLSBF INSERT INTO POSLSBFselect * from [192.168.1.100].[SCMIS].DBO.possrlbf ...

  2. 论文笔记【一】Chinese NER Using Lattice LSTM

    论文:Chinese NER Using Lattice LSTM 论文链接:https://arxiv.org/abs/1805.02023 论文作者:Yue Zhang∗and Jie Yang∗ ...

  3. 【LDA】nlp

    http://pythonhosted.org/lda/getting_started.html http://radimrehurek.com/gensim/

  4. 448. Find All Numbers Disappeared in an Array【easy】

    448. Find All Numbers Disappeared in an Array[easy] Given an array of integers where 1 ≤ a[i] ≤ n (n ...

  5. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  6. 【Nodejs】理想论坛帖子爬虫1.01

    用Nodejs把Python实现过的理想论坛爬虫又实现了一遍,但是怎么判断所有回调函数都结束没有好办法,目前的spiderCount==spiderFinished判断法在多页情况下还是会提前中止. ...

  7. 【BZOJ-1146】网络管理Network DFS序 + 带修主席树

    1146: [CTSC2008]网络管理Network Time Limit: 50 Sec  Memory Limit: 162 MBSubmit: 3495  Solved: 1032[Submi ...

  8. 通用js函数集锦<来源于网络> 【二】

    通用js函数集锦<来源于网络> [二] 1.数组方法集2.cookie方法集3.url方法集4.正则表达式方法集5.字符串方法集6.加密方法集7.日期方法集8.浏览器检测方法集9.json ...

  9. 【BZOJ3940】【BZOJ3942】[Usaco2015 Feb]Censoring AC自动机/KMP/hash+栈

    [BZOJ3942][Usaco2015 Feb]Censoring Description Farmer John has purchased a subscription to Good Hoov ...

随机推荐

  1. 关闭firefox火狐浏览器下载完成时自动扫描(49.0.2以后版本)

    本人自己找到的方法,亲测有效,如下:1.在火狐浏览器地址里输入about:config回车,可能会提示“这可能使质量保证失效”,点击[我了解此风险!]2.在搜索框里输入browser.safebrow ...

  2. beta版本——第一次冲刺

    第一次冲刺 (1)SCRUM部分☁️ ✨成员描述: 姓名 李星晨 完成了哪个任务 增加了个人中心返回主页按钮 花了多少时间 1h 还剩余多少时间 1h 遇到什么困难 没有遇到问题 这两天解决的进度 1 ...

  3. TPA测试项目管理系统-测试用例管理

            Test Project Administrator(简称TPA)是经纬恒润自主研发的一款专业的测试项目管理工具,目前已广泛的应用于国内二十余个整车厂和零部件供应商.它可以管理测试过程 ...

  4. Spring Cloud 微服务:Eureka+Zuul+Ribbon+Hystrix+SpringConfig实现流程图

    相信现在已经有很多小伙伴已经或者准备使用springcloud微服务了,接下来为大家搭建一个微服务框架,后期可以自己进行扩展.会提供一个小案例: 服务提供者和服务消费者 ,消费者会调用提供者的服务,新 ...

  5. SparkSQL读写外部数据源-jext文件和table数据源的读写

    object ParquetFileTest { def main(args: Array[String]): Unit = { val spark = SparkSession .builder() ...

  6. 服务端高并发分布式架构演进之路 转载,原文地址:https://segmentfault.com/a/1190000018626163

    1. 概述 本文以淘宝作为例子,介绍从一百个到千万级并发情况下服务端的架构的演进过程,同时列举出每个演进阶段会遇到的相关技术,让大家对架构的演进有一个整体的认知,文章最后汇总了一些架构设计的原则. 特 ...

  7. 101 More Security Best Practices for Kubernetes

    https://rancher.com/blog/2019/2019-01-17-101-more-kubernetes-security-best-practices/ The CNCF recen ...

  8. Linux内核调试的方式以及工具集锦

    原文:https://blog.csdn.net/gatieme/article/details/68948080 CSDN GitHubLinux内核调试的方式以及工具集锦 LDD-LinuxDev ...

  9. telegraf 学习二 几个概念

    telegraf 自身包好了自己处理metrics 的数据模型,以及出炉方法 metrics Telegraf指标是用于在处理期间对数据建模的内部表示.这些指标完全基于InfluxDB的数据模型,包含 ...

  10. graphql-hooks hooks first 的graphql 客户端

    graphql-hooks 是一个hooks first 的graphql 客户端,支持一一些特性 首类hooks api 比较小(5.3Kb) gzip 1.8 kb 完整支持ssr (通过grap ...