本文翻译自官网:Hive Beta https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/hive/

Flink Table Api & SQL 翻译目录

Apache Hive已将自己确立为数据仓库生态系统的焦点。 它不仅充当用于大数据分析和ETL的SQL引擎,而且也是数据发现, 定义和演变数据的数据管理平台。

Flink提供了与Hive的双重集成。 首先是利用Hive的Metastore作为持久性 catalog,以跨会话存储Flink特定的元数据。 第二个是提供Flink作为读取和写入Hive表的替代引擎。

hive catalog 旨在与现有的 hive 安装程序 “开箱即用” 兼容。 您不需要修改现有的 Hive Metastore 或更改表的数据放置或分区。

Flink支持Hive 2.3.41.2.1并且依赖于Hive对其他次要版本的兼容性保证。

如果您使用其他次要Hive版本,例如1.2.2或2.3.1,则还可以选择最接近的版本1.2.1(对于1.2.2)或2.3.4(对于2.3.1)来解决。 例如,您要使用Flink在SQL客户端中集成2.3.1 hive版本,只需在YAML配置中将hive-version设置为2.3.4。 通过Table API创建HiveCatalog实例时,类似地传递版本字符串。

欢迎用户使用此替代方法尝试不同的版本。 由于仅测试了2.3.4和1.2.1,所以可能存在意外问题。 我们将在将来的版本中测试并支持更多版本。

依赖

为了与Hive集成,用户在他们的项目中需要以下依赖项。

hive 2.3.4

<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-hive_2.11</artifactId>
<version>1.9.0</version>
<scope>provided</scope>
</dependency> <!-- Hadoop Dependencies --> <dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-hadoop-compatibility_2.11</artifactId>
<version>1.9.0</version>
<scope>provided</scope>
</dependency> <!-- Hive 2.3.4 is built with Hadoop 2.7.2. We pick 2.7.5 which flink-shaded-hadoop is pre-built with, but users can pick their own hadoop version, as long as it's compatible with Hadoop 2.7.2 --> <dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-shaded-hadoop-2-uber</artifactId>
<version>2.7.5-8.0</version>
<scope>provided</scope>
</dependency> <!-- Hive Metastore -->
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>2.3.4</version>
</dependency>

hive 1.2.1

<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-hive_2.11</artifactId>
<version>1.9.0</version>
<scope>provided</scope>
</dependency> <!-- Hadoop Dependencies --> <dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-hadoop-compatibility_2.11</artifactId>
<version>1.9.0</version>
<scope>provided</scope>
</dependency> <!-- Hive 1.2.1 is built with Hadoop 2.6.0. We pick 2.6.5 which flink-shaded-hadoop is pre-built with, but users can pick their own hadoop version, as long as it's compatible with Hadoop 2.6.0 --> <dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-shaded-hadoop-2-uber</artifactId>
<version>2.6.5-8.0</version>
<scope>provided</scope>
</dependency> <!-- Hive Metastore -->
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-metastore</artifactId>
<version>1.2.1</version>
</dependency> <dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>1.2.1</version>
</dependency> <dependency>
<groupId>org.apache.thrift</groupId>
<artifactId>libfb303</artifactId>
<version>0.9.3</version>
</dependency>

连接到Hive

通过表环境或YAML配置,使用Hive catalog 连接到现有的Hive安装程序。

val name            = "myhive"
val defaultDatabase = "mydatabase"
val hiveConfDir = "/opt/hive-conf"
val version = "2.3.4" // or 1.2.1 val hive = new HiveCatalog(name, defaultDatabase, hiveConfDir, version)
tableEnv.registerCatalog("myhive", hive)

支持的类型

当前HiveCatalog支持具有以下映射的大多数Flink数据类型:

Flink Data Type Hive Data Type
CHAR(p) CHAR(p)
VARCHAR(p) VARCHAR(p)
STRING STRING
BOOLEAN BOOLEAN
TINYINT TINYINT
SMALLINT SMALLINT
INT INT
BIGINT LONG
FLOAT FLOAT
DOUBLE DOUBLE
DECIMAL(p, s) DECIMAL(p, s)
DATE DATE
BYTES BINARY
ARRAY<T> LIST<T>
MAP<K, V> MAP<K, V>
ROW STRUCT

局限性

Hive数据类型中的以下限制会影响Flink和Hive之间的映射:

  • CHAR(p) 最大长度为255
  • VARCHAR(p) 最大长度为65535
  • Hive MAP仅支持原始键类型,而Flink MAP可以是任何数据类型
  • 不支持Hive的 UNION 类型
  • Flink的INTERVAL类型不能映射到Hive INTERVAL类型
  • Hive不支持 Flink TIMESTAMP_WITH_TIME_ZONETIMESTAMP_WITH_LOCAL_TIME_ZONE
  • 由于精度差异,Flink的TIMESTAMP_WITHOUT_TIME_ZONE类型无法映射到Hive的TIMESTAMP类型。
  • Hive不支持Flink 的 MULTISET

欢迎关注Flink菜鸟公众号,会不定期更新Flink(开发技术)相关的推文

【翻译】Flink Table Api & SQL — Hive Beta的更多相关文章

  1. 【翻译】Flink Table Api & SQL — Catalog Beta 版

    本文翻译自官网:Catalogs Beta  https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/catalog ...

  2. 【翻译】Flink Table Api & SQL — Hive —— 在 scala shell 中使用 Hive 连接器

    本文翻译自官网:Use Hive connector in scala shell  https://ci.apache.org/projects/flink/flink-docs-release-1 ...

  3. 【翻译】Flink Table Api & SQL — Hive —— Hive 函数

    本文翻译自官网:Hive Functions  https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/hive/h ...

  4. 【翻译】Flink Table Api & SQL — Hive —— 读写 Hive 表

    本文翻译自官网:Reading & Writing Hive Tables  https://ci.apache.org/projects/flink/flink-docs-release-1 ...

  5. Flink Table Api & SQL 翻译目录

    Flink 官网 Table Api & SQL  相关文档的翻译终于完成,这里整理一个安装官网目录顺序一样的目录 [翻译]Flink Table Api & SQL —— Overv ...

  6. 【翻译】Flink Table Api & SQL — SQL客户端Beta 版

    本文翻译自官网:SQL Client Beta  https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/sqlCl ...

  7. 【翻译】Flink Table Api & SQL —Streaming 概念 —— 表中的模式匹配 Beta版

    本文翻译自官网:Detecting Patterns in Tables Beta  https://ci.apache.org/projects/flink/flink-docs-release-1 ...

  8. 【翻译】Flink Table Api & SQL — 流概念

    本文翻译自官网:Streaming Concepts  https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/st ...

  9. 【翻译】Flink Table Api & SQL — 性能调优 — 流式聚合

    本文翻译自官网:Streaming Aggregation  https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table ...

随机推荐

  1. Python入门篇-函数、参数及参数解构

    Python入门篇-函数.参数及参数解构 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.函数概述 1>.函数的作用即分类 函数 数学定义:y=f(x) ,y是x的函数,x ...

  2. 百度语音合成api/sdk及demo

    1.流程 1)换取token 用Api Key 和 SecretKey.访问https://openapi.baidu.com/oauth/2.0/token 换取 token // appKey = ...

  3. header中Content-Disposition的作用与使用方法

    下载文件的时候会使用: Content-disposition 是 MIME 协议的扩展,MIME 协议指示 MIME 用户代理如何显示附加的文件.Content-disposition其实可以控制用 ...

  4. CentOS7安装Postman

    1. 进入官网:https://www.getpostman.com/downloads/2. 点击下载3. 直接安装:tar zxvf ***.tar.gz4. 确认当前目录: pwd /home/ ...

  5. O(n) 取得数组中每个元素右边最后一个比它大的元素

    题目 2019.9.7,icpc徐州网络赛的E题 XKC's basketball team ,计蒜客上还可以做. 链接:https://nanti.jisuanke.com/t/41387 Inpu ...

  6. 《Java周边》vue开发环境搭建(windows)

    1. NodeJs 安装包下载 百度云:链接: https://pan.baidu.com/s/169TdKRLZd0dXbKSGTr8evw 提取码: th4a 复制这段内容后打开百度网盘手机App ...

  7. 《逆袭团队》第八次团队作业:Alpha冲刺

    项目 内容 软件工程 任课教师博客主页链接 作业链接地址 团队作业8:Alpha冲刺 团队名称 逆袭团队 具体目标 完成最后冲刺阶段的5次博客 一.团队项目github仓库地址:Github 二.Sc ...

  8. 深度学习Keras框架笔记之核心层基类

    Keras的Layers,就是构成网络的每一层.Keras实现了很多层,包括核心层.卷基层.RNN网络层等诸多常用的网络结构.下面开介绍核心层中包含了哪些内容.因为这个核心层我现在还没有全部用到,所以 ...

  9. 通过iptables限制docker容器端口

    如何限制docker暴露的对外访问端口 docker 会在iptables上加上自己的转发规则,如果直接在input链上限制端口是没有效果的.这就需要限制docker的转发链上的DOCKER表. # ...

  10. pageContext 和 config 内置对象

    forword("目标页面")  : 使当前页面跳转到另一个目标页面 include("目标页面") ;使当前页面包含另一个页面的信息