为什么需要索引(Why is it needed)?
当数据保存在磁盘类存储介质上时,它是作为数据块存放。这些数据块是被当作一个整体来访问的,这样可以保证操作的原子性。硬盘数据块存储结构类似于链表,都包含数据部分,以及一个指向下一个节点(或数据块)的指针,不需要连续存储。

记录集只能在某个关键字段上进行排序,所以如果需要在一个无序字段上进行搜索,就要执行一个线性搜索(Linear Search)的过程,平均需要访问N/2的数据块,N是表所占据的数据块数目。如果这个字段是一个非主键字段(也就是说,不包含唯一的访问入口),那么需要在N个数据块上搜索整个表格空间。

但是对于一个有序字段,可以运用二分查找(Binary Search),这样只要访问log2 (N)的数据块。这就是为什么性能能得到本质上的提高。

什么是索引(What is indexing)?
索引是对记录集的多个字段进行排序的方法。在一张表中为一个字段创建一个索引,将创建另外一个数据结构,包含字段数值以及指向相关记录的指针,然后对这个索引结构进行排序,允许在该数据上进行二分法排序。

副作用是索引需要额外的磁盘空间,对于MyISAM引擎而言,这些索引是被统一保存在一张表中的,这个文件将很快到达底层文件系统所能够支持的大小限制,如果很多字段都建立了索引的话。

索引如何工作(How does it work?)
首先,我们建立一个示范数据库表:

字段名       数据类型      大小
id (Primary key) Unsigned INT   4 bytes
firstName        Char(50)       50 bytes
lastName         Char(50)       50 bytes
emailAddress     Char(100)      100 bytes
注意:使用char是为了指定准确的磁盘占用大小。这个示范数据库包含500万行,而且没有索引。我们将分析一些查询语句的性能,一个是使用主键id(有序)查询,一个是使用firstName(非关键无序字段)。

例1

我们的示范数据库有r=5,000,000条记录,每条记录长度R=204字节而且使用MyISAM引擎存储(默认数据块大小为B=1024字节),这张表的块因子(blocking factor)会是bfr = (B/R) = 1024/204 = 5 条记录每磁盘数据块。保存这张表所需要的磁盘块为N = (r/bfr) = 5000000/5 = 1,000,000 blocks。

在id字段上的线性搜索平均需要N/2 = 500,000块访问来找到一条记录假设id字段是查询关键值,不过既然id字段是有序的,可以执行一个二分查询,这样平均只需要访问log2 (1000000) = 19.93 = 20 个数据块。我们马上就看到了极大的提高。

现在firstName字段既不是有序的,无法执行二分搜索,数值也不具有唯一性,所以对这张表的查找必须到最后一个记录即全表扫描N = 1,000,000个数据块访问。这就是索引用来改进的地方。

假如索引记录只包含一个索引列以及一个指向原记录数据的指针,那么它显而易见会比原记录(多列)要小。所以索引本身所需要的磁盘块要更少,扫描数目也少。firstName索引表结构如下:

Field name       Data type      Size on disk
firstName        Char(50)       50 bytes
(record pointer) Special        4 bytes
注意: MySQL里的指针按表大小的不同分别可能是 2, 3, 4 或 5 个字节。

例2

假设我们的数据库有r = 5,000,000 条记录,建立了一个长R = 54字节的索引,并且使用默认磁盘块大小为1,024字节。那么该索引的块因子为bfr = (B/R) = 1024/54 = 18 条记录每磁盘块。容纳这个索引表总共需要的磁盘块为N = (r/bfr) = 5000000/18 = 277,778 块。

现在使用FirstName字段来进行搜索就可以利用索引来提高性能。这允许使用一个二分查找,平均log2 (277778) = 18.08 -> 19次数据块访问。找到实际记录的地址,这需要进一步的块读取,这样总数达到19 + 1 = 20次数据块访问,这和非索引表的数据块访问次数有天壤之别。

什么时候使用索引(When should it be used?)
鉴于创建索引需要额外的磁盘空间(上面的例子需要额外的277778个磁盘块),以及太多的索引会导致文件系统大小限制所产生的问题,所以对哪些字段建立索引,什么情况下使用索引,需要审慎考虑。

由于索引只是用来加速数据查询,那么显然对只是用来输出的字段建立索引会浪费磁盘空间以及发生插入、删除操作时的处理时间,所以这种情况下应该尽量避免。此外鉴于二分搜索的特性,数据的基数或独立性是很重要的。在基数为2的字段上建立索引,将把数据分割一半,而基数为1000则将返回大约1000条记录。低基数的二分查找效率将降低为一个线性排序,而且查询优化器可能会在基数小于记录数某个比例时(如30%)的情况下将避免使用索引而直接查询原表,所以这种情况下的索引浪费了空间。

MySQL索引工作原理的更多相关文章

  1. mysql索引工作原理、分类

    一.概述 在mysql中,索引(index)又叫键(key),它是存储引擎用于快速找到所需记录的一种数据结构.在越来越大的表中,索引是对查询性能优化最有效的手段,索引对性能影响非常关键.另外,mysq ...

  2. MySQL:索引工作原理

    索引查找:通过索引键找到索引的叶子节点,再通过叶子节点的标记快速找到表中对应的行数据,再返回指定的列 索引找查是通过索引键定先位到一块局部区域,再开始扫描匹配的数据的. 为什么需要索引(Why is ...

  3. MySQL/MariaDB数据库的索引工作原理和优化

    MySQL/MariaDB数据库的索引工作原理和优化 作者:尹正杰  版权声明:原创作品,谢绝转载!否则将追究法律责任. 实际工作中索引这个技术是影响服务器性能一个非常重要的指标,因此我们得花时间去了 ...

  4. 重新学习MySQL数据库4:Mysql索引实现原理

    重新学习Mysql数据库4:Mysql索引实现原理 MySQL索引类型 (https://www.cnblogs.com/luyucheng/p/6289714.html) 一.简介 MySQL目前主 ...

  5. MySQL索引的原理,B+树、聚集索引和二级索引

    MySQL索引的原理,B+树.聚集索引和二级索引的结构分析 一.索引类型 1.1 B树 1.2 B+树 1.3 哈希索引 1.4 聚集索引(clusterd index) 1.5 二级索引(secon ...

  6. MYSQL索引结构原理、性能分析与优化

    [转]MYSQL索引结构原理.性能分析与优化 第一部分:基础知识 索引 官方介绍索引是帮助MySQL高效获取数据的数据结构.笔者理解索引相当于一本书的目录,通过目录就知道要的资料在哪里, 不用一页一页 ...

  7. Ceph对象存储网关中的索引工作原理<转>

    Ceph 对象存储网关允许你通过 Swift 及 S3 API 访问 Ceph .它将这些 API 请求转化为 librados 请求.Librados 是一个非常出色的对象存储(库)但是它无法高效的 ...

  8. 【转】由浅入深探究mysql索引结构原理、性能分析与优化

    摘要: 第一部分:基础知识 第二部分:MYISAM和INNODB索引结构 1.简单介绍B-tree B+ tree树 2.MyisAM索引结构 3.Annode索引结构 4.MyisAM索引与Inno ...

  9. MySQL-索引工作原理及使用注意事项

    1.为什么需要索引(Why is it needed)? 当数据保存在磁盘类存储介质上时,它是作为数据块存放.这些数据块是被当作一个整体来访问的,这样可以保证操作的原子性.硬盘数据块存储结构类似于链表 ...

随机推荐

  1. ubuntu取消自动登录

    /etc/lightdm/lightdm.conf.d/50-nvidia.conf 注释 autologin-user=<YOUR USER>

  2. Unity3D地下守护神ARPG开发三部曲 视频教程+素材+源码

    通过大型教学项目“MMOARPG地下守护神”项目的学习,掌握常用设计模式.架构设计.各种重要算法与设计模式在项目中的灵活运用,学后达到中高级游戏研发人员水平,做主程必备. 适用人群    学习Unit ...

  3. Spark(四十九):Spark On YARN启动流程源码分析(一)

    引导: 该篇章主要讲解执行spark-submit.sh提交到将任务提交给Yarn阶段代码分析. spark-submit的入口函数 一般提交一个spark作业的方式采用spark-submit来提交 ...

  4. lnmp新增https访问【转】

    环境是使用lnmp一键安装包搭建的: 1 首先去这个网站下载证书:免费ssl证书 最终会得到两个文件 2:在/usr/local/nginx/conf创建cert目录把这两个文件放进去,这个地址后面有 ...

  5. Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression

    Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression 2019-05-20 19:3 ...

  6. etcd常用命令记录

    etcd常用命令记录   1.查看etcd的版本 [root@etcd01 ssl]# curl -L http://127.0.0.1:2379/version {"etcdserver& ...

  7. 005 DOM02

    在上一篇DOM的基础上,继续案例的实践. 一:案例 1.禁用文本框 <!DOCTYPE html> <html lang="en"> <head> ...

  8. Docker Rootless Container

    容器安全拾遗 - Rootless Container初探-云栖社区-阿里云https://yq.aliyun.com/articles/700923 medium.comhttps://medium ...

  9. Mac OS -bash: psql: command not found 使用 psql 命令报错

    使用 psql 在 mac os 系统上登录,系统显示没有 psql 这个命令存在 解决方法如下: 将 postgresql 的 bin 目录添加到环境变量中即可 export PATH=" ...

  10. Spring Cloud微服务安全实战- 2-1 环境安装

    下面这些.后续随着讲课逐步再去安装. 2019年1月开始 jdk是收费的 找jdk最后一个免费版本 8u192这是jdk1.8最后的一个免费版本 STS spring提供的ide可以方便的开发spri ...