什么是数据仓库

数据仓库,英文名称为Data Warehouse,可简写为DW或DWH。数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它出于分析性报告和决策支持目的而创建。 为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。

数据仓库的特点

1.数据仓库的数据是面向主题的

与传统数据库面向应用进行数据组织的特点相对应,数据仓库中的数据是面向主题进行组织的。什么是主题呢?首先,主题是一个抽象的概念,是较高层次上企业信息系统中的数据综合、归类并进行分析利用的抽象。在逻辑意义上,它是对应企业中某一宏观分析领域所涉及的分析对象。面向主题的数据组织方式,就是在较高层次上对分析对象的数据的一个完整、一致的描述,能完整、统一地刻划各个分析对象所涉及的企业的各项数据,以及数据之间的联系。所谓较高层次是相对面向应用的数据组织方式而言的,是指按照主题进行数据组织的方式具有更高的数据抽象级别。

2. 数据仓库的数据是集成的

数据仓库的数据是从原有的分散的数据库数据抽取来的。操作型数据与DSS分析型数据之间差别甚大。第一,数据仓库的每一个主题所对应的源数据在原有的各分散数据库中有许多重复和不一致的地方,且来源于不同的联机系统的数据都和不同的应用逻辑捆绑在一起;第二,数据仓库中的综合数据不能从原有的数据库系统直接得到。因此在数据进入数据仓库之前,必然要经过统一与综合,这一步是数据仓库建设中最关键、最复杂的一步,所要完成的工作有:
    (1)要统一源数据中所有矛盾之处,如字段的同名异义、异名同义、单位不统一、字长不一致,等等。
    (2)进行数据综合和计算。数据仓库中的数据综合工作可以在从原有数据库抽取 数据时生成,但许多是在数据仓库内部生成的,即进入数据仓库以后进行综合生成的。

3. 数据仓库的数据是不可更新的

数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一般情况下并不进行修改操作。数据仓库的数据反映的是一段相当长的时间内历史数据的内容,是不同时点的数据库快照的集合,以及基于这些快照进行统计、综合和重组的导出数据,而不是联机处理的数据。数据库中进行联机处理的数据经过集成输入到数据仓库中,一旦数据仓库存放的数据已经超过数据仓库的数据存储期限,这些数据将从当前的数据仓库中删去。因为数据仓库只进行数据查询操作,所以数据仓库管理系统相比数据库管理系统而言要简单得多。数据库管理系统中许多技术难点,如完整性保护、并发控制等等,在数据仓库的管理中几乎可以省去。但是由于数据仓库的查询数据量往往很大,所以就对数据查询提出了更高的要求,它要求采用各种复杂的索引技术;同时由于数据仓库面向的是商业企业的高层管理者,他们会对数据查询的界面友好性和数据表示提出更高的要求。

4. 数据仓库的数据是随时间不断变化的

数据仓库中的数据不可更新是针对应用来说的,也就是说,数据仓库的用户进行分析处理时是不进行数据更新操作的。但并不是说,在从数据集成输入数据仓库开始到最终被删除的整个数据生存周期中,所有的数据仓库数据都是永远不变的。
    数据仓库的数据是随时间的变化而不断变化的,这是数据仓库数据的第四个特征。这一特征表现在以下3方面:
    (1)数据仓库随时间变化不断增加新的数据内容。数据仓库系统必须不断捕捉OLTP数据库中变化的数据,追加到数据仓库中去,也就是要不断地生成OLTP数据库的快照,经统一集成后增加到数据仓库中去;但对于确实不再变化的数据库快照,如果捕捉到新的变化数据,则只生成一个新的数据库快照增加进去,而不会对原有的数据库快照进行修改。
    (2)数据仓库随时间变化不断删去旧的数据内容。数据仓库的数据也有存储期限,一旦超过了这一期限,过期数据就要被删除。只是数据仓库内的数据时限要远远长于操作型环境中的数据时限。在操作型环境中一般只保存有60~90天的数据,而在数据仓库中则需要保存较长时限的数据(如5~10年),以适应DSS进行趋势分析的要求。
    (3)数据仓库中包含有大量的综合数据,这些综合数据中很多跟时间有关,如数据经常按照时间段进行综合,或隔一定的时间片进行抽样等等。这些数据要随着时间的变化不断地进行重新综合。因此,数据仓库的数据特征都包含时间项,以标明数据的历史时期。

数据库与数据仓库的区别实际讲的是OLTP与OLAP的区别

操作型处理,叫联机事务处理OLTP(On-Line Transaction Processing,),也可以称面向交易的处理系统,它是针对具体业务在数据库联机的日常操作,通常对少数记录进行查询、修改。用户较为关心操作的响应时间、数据的安全性、完整性和并发支持的用户数等问题。传统的数据库系统作为数据管理的主要手段,主要用于操作型处理。

分析型处理,叫联机分析处理OLAP(On-Line Analytical Processing)一般针对某些主题的历史数据进行分析,支持管理决策。

数据仓库架构分层

数据仓库标准上可以分为四层:ODS(临时存储层)、PDW(数据仓库层)、DM(数据集市层)、APP(应用层)。

  ODS层:

为临时存储层,是接口数据的临时存储区域,为后一步的数据处理做准备。一般来说ODS层的数据和源系统的数据是同构的,主要目的是简化后续数据加工处理的工作。从数据粒度上来说ODS层的数据粒度是最细的。ODS层的表通常包括两类,一个用于存储当前需要加载的数据,一个用于存储处理完后的历史数据。历史数据一般保存3-6个月后需要清除,以节省空间。但不同的项目要区别对待,如果源系统的数据量不大,可以保留更长的时间,甚至全量保存;

PDW层:

年的数据。

DM

数据集市层,这层数据是面向主题来组织数据的,通常是星形或雪花结构的数据。从数据粒度来说,这层的数据是轻度汇总级的数据,已经不存在明细数据了。从数据的时间跨度来说,通常是PDW层的一部分,主要的目的是为了满足用户分析的需求,而从分析的角度来说,用户通常只需要分析近几年(如近三年的数据)的即可。从数据的广度来说,仍然覆盖了所有业务数据。

APP层:

为应用层,这层数据是完全为了满足具体的分析需求而构建的数据,也是星形或雪花结构的数据。从数据粒度来说是高度汇总的数据。从数据的广度来说,则并不一定会覆盖所有业务数据,而是DM层数据的一个真子集,从某种意义上来说是DM层数据的一个重复。从极端情况来说,可以为每一张报表在APP层构建一个模型来支持,达到以空间换时间的目的数据仓库的标准分层只是一个建议性质的标准,实际实施时需要根据实际情况确定数据仓库的分层,不同类型的数据也可能采取不同的分层方法。

为什么要对数据仓库分层:

1用空间换时间,通过大量的预处理来提升应用系统的用户体验(效率),因此数据仓库会存在大量冗余的数据;

2如果不分层的话,如果源业务系统的业务规则发生变化将会影响整个数据清洗过程,工作量巨大

3通过数据分层管理可以简化数据清洗的过程,因为把原来一步的工作分到了多个步骤去完成,相当于把一个复杂的工作拆成了多个简单的工作,把一个大的黑盒变成了一个白盒,每一层的处理逻辑都相对简单和容易理解,这样我们比较容易保证每一个步骤的正确性,当数据发生错误的时候,往往我们只需要局部调整某个步骤即可。

数据库与数据仓库的区别实际讲的是OLTP与OLAP的区别的更多相关文章

  1. OLTP和OLAP的区别

    OLTP和OLAP的区别 联机事务处理OLTP(on-line transaction processing) 主要是执行基本日常的事务处理,比如数据库记录的增删查改.比如在银行的一笔交易记录,就是一 ...

  2. OLTP与OLAP的区别

    OLTP和OLAP的区别 联机事务处理OLTP(on-line transaction processing) 主要是执行基本日常的事务处理,比如数据库记录的增删查改.比如在银行的一笔交易记录,就是一 ...

  3. 【BI】OLTP与OLAP的区别

    概念 OLTP:联机事务处理(On-Line transaction Processing) OLAP:联机分析处理(On-Line Analytical Processing) (1)OLTP是传统 ...

  4. 【clickhouse专栏】数据库、数据仓库之间的区别与联系

    从本篇文章开始,笔者打算写一个系列的<clickhouse专栏>,其全称是Click Stream,Data WareHouse,简称ClickHouse.从其全称中的"Data ...

  5. 数据仓库原理<1>:数据库与数据仓库

    updated 2015.8.27 updated 2015.8.26 updated 2015.8.23 0. 说明 <数据仓库原理>系列博文,是笔者在学习数据仓库与商业智能时的读书笔记 ...

  6. SQL数据库中临时表、临时变量和WITH AS关键词创建“临时表”的区别

    原文链接:https://www.cnblogs.com/zhaowei303/articles/4204805.html SQL数据库中数据处理时,有时候需要建立临时表,将查询后的结果集放到临时表中 ...

  7. 操作数据库系统(OLTP)和联机分析处理系统(OLAP)的区别

    联机操作数据库系统的主要任务是执行联机事务和查询处理.这种系统称为联机事务处理(OnLine Transaction Processing,OLTP) 系统.它们涵盖了单位的大部分日常操作,如购物,库 ...

  8. Hadoop生态上几个技术的关系与区别:hive、pig、hbase 关系与区别  Pig

    Hadoop生态上几个技术的关系与区别:hive.pig.hbase 关系与区别 Pig 一种操作hadoop的轻量级脚本语言,最初又雅虎公司推出,不过现在正在走下坡路了.当初雅虎自己慢慢退出pig的 ...

  9. java 标准输出与标准错误 out与 err 区别 用法 联系 java中的out与err区别 System.out和System.err的区别 System.out.println和System.err.println的区别 Java重定向System.out和System.err

    本文关键词: java 标准输出与标准错误    out与 err 区别 用法 联系  java中的out与err区别  System.out和System.err的区别 System.out.pri ...

随机推荐

  1. 为什么JDK代码这样写?final ReentrantLock takeLock = this.takeLock

    在CopyOnWriteArrayList的源码中有一个细节值得学习,就是在addIfAbsent方法中ReentrantLock的用法,先是将一个这个成员变量this.lock重新赋值给一个局部变量 ...

  2. 如何分析redis中的慢查询

    慢查询的两个参数配置 慢查询只记录命令执行时间,并不包括命令排队和网络传输时间.因此客户端执行命令的时间会大于命令实际执行时间.因为命令执行排队机制,慢查询会导致其他命令级联阻塞,因此当客户端出现请求 ...

  3. 转 zabbix 自动发现和 zabbix自定义用户key与参数User parameters

    ########31 https://www.cnblogs.com/yjt1993/p/10883345.html 1.概念 在配置Iterms的过程中,有时候需要对类似的Iterms进行添加,这些 ...

  4. SDKMAN一个基于命令行界面的SDK用户环境管理程序

    1.背景 使用过Python开发的朋友,应该了解到Python2和Python3语法的差异,有时候从网上下载了基于不同解释器的代码,要来回切换版本, 使用起来不是很方便,有时候甚至很麻烦.于是有人发明 ...

  5. LeetCode_482. License Key Formatting

    482. License Key Formatting Easy You are given a license key represented as a string S which consist ...

  6. 191128A学习入门-典型信号,单位冲激信号

    之所以研究典型信号是因为这些信号可以组合成复杂的信号.而根据线性时不变系统的性质,先把复杂信号拆解成多个简单信号的组合,那么每个简单信号通过这个系统后的输出累加等于原来的输出. 单位冲激信号,单位阶跃 ...

  7. codesmith设置mysql的连接字符串

    .net core,codesmith连不上 server=192.168.3.240;Initial Catalog=tpmdb;User=root;Password=root .net frame ...

  8. Git - ignore过滤文件

    Git - ignore 官网:https://git-scm.com/docs/gitignore 今天在初始化仓库的时候,考虑到如何过滤不需要的文件进入版本控制系统.所以去查阅了一番官方文档. 想 ...

  9. 关于JavaScript面向对象那些事

    当你在使用手机的时候,你会发现,你并不懂得其中的原理就会操作了,其实这就是面向对象的思想.面向对象还有很多地方都会运用到.JavaScript也不例外,现在跟随我的脚步,来学习一下吧. 面向过程和面向 ...

  10. Centos 7搭建Gitlab服务器超详细

    一. 安装并配置必要的依赖关系在CentOS系统上安装所需的依赖:ssh,防火墙,postfix(用于邮件通知) ,wget,以下这些命令也会打开系统防火墙中的HTTP和SSH端口访问. 1.安装ss ...