当有多个features时,无法通过图像来评估hypothesis

当我们的hypothesis只有一个features时,可以通过观察它的图像来看它是否overfitting,但是如果我们有多个features的情况下,就无法通过画出图形来看是否overfitting.我们需要另一种方法来评估我们的函数。

评估hypothesis的标准方法

这儿我们将我们的Dataset分成两部分,一部分用来做为training set(70%),一部分用来做为Test set(30%),mtest表示test example的个数。

注意这个7/3分是针对随机排列的数据来分的,如果数据之间有一定的顺序的话,则应先将这些数据打乱后(随机分布),取前70%为training set,后30%为test set.

如果数据本来就是随机分布的(没有一定的顺序),则将前70%做为training set,后30%做为test set。

评估hypothesis的标准方法:For linear regression

1>我们从之前分的training data中求得parameter Θ

2>用求得的hypothesis来计算test set error, linear regression的test set error计算公式如上图所示。

评估hypothesis的标准方法: For logistic regression

1>先从training data(70%的data set)中求得parameter Θ

2> 用求得的hypothesis来计算test set error, logistic regression的test set error计算公式如上图所示Jtest(Θ)=...

3>另一种代替test set error的方法是Misclassification error也叫(0/1 misclassification error),如果误分类了,则err为1,正确分类的话,则为0;计算公式如上图所示Test error = .....

评估预测函数(2)---对hypothesis进行评估的更多相关文章

  1. 评估预测函数(3)---Model selection(选择多项式的次数) and Train/validation/test sets

    假设我们现在想要知道what degree of polynomial to fit to a data set 或者 应该选择什么features 或者 如何选择regularization par ...

  2. 评估预测函数(1)---算法不能达到我们的目的时,Deciding what to try next

    在设计机器学习系统时,一些建议与指导,让我们能明白怎么选择一条最合适,最正确的道路. 当我们要开发或者要改进一个机器学习系统时,我们应该接下来做些什么? try smaller sets of fea ...

  3. ubuntu之路——day10.2单一数字评估指标与满足和优化的评估指标

    单一数字评估指标: 我们在平时常用到的模型评估指标是精度(accuracy)和错误率(error rate),错误率是:分类错误的样本数站样本总数的比例,即E=n/m(如果在m个样本中有n个样本分类错 ...

  4. xshell 6评估已过期解决办法 / xftp 6 评估已过期解决办法

    1.工具用途介绍 Xshell  是一个强大的安全终端模拟软件,它支持SSH1, SSH2, 以及Microsoft Windows 平台的TELNET 协议.Xshell 通过互联网到远程主机的安全 ...

  5. Stanford机器学习笔记-6. 学习模型的评估和选择

    6. 学习模型的评估与选择 Content 6. 学习模型的评估与选择 6.1 如何调试学习算法 6.2 评估假设函数(Evaluating a hypothesis) 6.3 模型选择与训练/验证/ ...

  6. sklearn中的模型评估-构建评估函数

    1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题. Scor ...

  7. 【数学建模】day14-建立GM(1,1)预测评估模型应用

    学习建立GM(1,1)灰色预测评估模型,解决实际问题: SARS疫情对某些经济指标的影响问题 一.问题的提出 2003 年的 SARS 疫情对中国部分行业的经济发展产生了一定影响,特别是对部分 疫情较 ...

  8. Spark随机深林扩展—OOB错误评估和变量权重

    本文目的 当前spark(1.3版)随机森林实现,没有包括OOB错误评估和变量权重计算.而这两个功能在实际工作中比较常用.OOB错误评估可以代替交叉检验,评估模型整体结果,避免交叉检验带来的计算开销. ...

  9. SparkML之推荐引擎(二)---推荐模型评估

    本文内容和代码是接着上篇文章来写的,推荐先看一下哈~ 我们上一篇文章是写了电影推荐的实现,但是推荐内容是否合理呢,这就需要我们对模型进行评估 针对推荐模型,这里根据 均方差 和 K值平均准确率 来对模 ...

随机推荐

  1. 本地yum源 、阿里yum源、163yum源的配置安装

    一.本地yum源 (我使用的7.3版本) 1..添加一个新的yum源配置文件dvd.repo(文件名字自定义) vi etc/yum.repos.d     添加新的内容: name=rhel_dvd ...

  2. python函数知识七 闭包、装饰器一(入门)、装饰器二(进阶)

    21.闭包 闭包:在嵌套函数内,使用非全局变量(且不使用本层变量) 闭包的作用:1.保证数据的安全性(纯洁度).2.装饰器使用 .__closure__判断是否是闭包 def func(): a = ...

  3. python基础 — Queue 队列

    queue介绍 queue是python中的标准库,俗称队列. 在python中,多个线程之间的数据是共享的,多个线程进行数据交换的时候,不能够保证数据的安全性和一致性,所以当多个线程需要进行数据交换 ...

  4. Python中logging快速上手教程

    本文使用得日志需要导入logging模块和logging.handlers模块,即 import logging import logging.handlers ''' author = " ...

  5. JDK提供的原子类和AbstractQueuedSynchronizer(AQS)

    大致分成: 1.原子更新基本类型 2.原子更新数组 3.原子更新抽象类型 4.原子更新字段 import java.util.concurrent.atomic.AtomicInteger; impo ...

  6. zookeeper集群搭建及ZAB协议

    zookeeper集群搭建非常简单,准备三台安装好zookeeper服务器,在其zoo.cfg配置中分表添加如下配置 initLimit 10 集群中的follower与leader之间完成初始化同步 ...

  7. angularjs 中的路由 与 bootstrap标签选项卡的冲突 解决方案

    当项目中使用了angularjs 的路由,则所有 像a标签的href 的链接都会走路由,实现页面跳转,那么有些地方需要使用选项卡,就会带来麻烦. 路由使用如下图: 某页面需要使用bootstrap的选 ...

  8. BUAA OO 2019 第四单元作业总结

    目录 第四单元总结 总 UML UML 类图 UML 时序图 UML 状态图 架构设计 第十三次作业 第十四次作业 课程总结 历次作业总结 架构设计 面向对象方法理解 测试方法理解与实践 改进建议 尽 ...

  9. 有状态的bean和无状态的bean的区别

    有状态会话bean :每个用户有自己特有的一个实例,在用户的生存期内,bean保持了用户的信息,即“有状态”:一旦用户灭亡(调用结束或实例结束),bean的生命期也告结束.即每个用户最初都会得到一个初 ...

  10. 【面试突击】- Mybatis-#{}和${}的区别

    原文链接:mybatis中#{}和${}的区别 1. #将传入的数据都当成一个字符串,会对自动传入的数据加一个双引号.如:order by #user_id#,如果传入的值是111,那么解析成sql时 ...