Codeforces 839D Winter is here - 暴力 - 容斥原理
Winter is here at the North and the White Walkers are close. John Snow has an army consisting of n soldiers. While the rest of the world is fighting for the Iron Throne, he is going to get ready for the attack of the White Walkers.
He has created a method to know how strong his army is. Let the i-th soldier’s strength be ai. For some k he calls i1, i2, ..., ik a clan if i1 < i2 < i3 < ... < ik and gcd(ai1, ai2, ..., aik) > 1 . He calls the strength of that clan k·gcd(ai1, ai2, ..., aik). Then he defines the strength of his army by the sum of strengths of all possible clans.
Your task is to find the strength of his army. As the number may be very large, you have to print it modulo 1000000007 (109 + 7).
Greatest common divisor (gcd) of a sequence of integers is the maximum possible integer so that each element of the sequence is divisible by it.
The first line contains integer n (1 ≤ n ≤ 200000) — the size of the army.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 1000000) — denoting the strengths of his soldiers.
Print one integer — the strength of John Snow's army modulo 1000000007 (109 + 7).
3
3 3 1
12
4
2 3 4 6
39
In the first sample the clans are {1}, {2}, {1, 2} so the answer will be 1·3 + 1·3 + 2·3 = 12
题目大意 给定n,集合A,设表示把这个集合内的所有数求最大公约数的结果,求。
根据常用套路,套一个循环去枚举gcd的结果,然后再求系数,于是有
现在设,于是有
现在考虑求f(i)。可以想到容斥原理。
先假设所有的集合的gcd是i的倍数都符合条件然后计算答案(给定数集A中所有是i的倍数的数组成的集合任选一个子集),然后再减去f(2i), f(3i),...
现在要面临两个问题
- 第一次求值如何处理?
首先把式子写出来,设这个集合的大小为n,那么有因为
对两边同时进行求导得到
再带入x = 1得到
- 设为是i的倍数的数的个数,如何快速求出?
根据定义式有
显然超时。虽然这是暴力,但是不够优美。
设表示,集合A中恰好为i的数有多少个。然后就可以得到总时间复杂度为O(mlog2m)的暴力:
最后求求和就完事了。
Code
/**
* Codeforces
* Problem#839D
* Accepted
* Time: 171ms
* Memory: 15400k
*/
#include <bits/stdc++.h>
using namespace std; const int lim = 1e6 + ;
const int moder = 1e9 + ; int n;
int *a;
int *pow2;
int cnt[lim], counter[lim];
int f[lim];
int res = ; inline void init() {
scanf("%d", &n);
a = new int[(n + )];
pow2 = new int[(n + )];
pow2[] = ;
for(int i = ; i <= n; i++) {
scanf("%d", a + i);
counter[a[i]]++;
pow2[i] = (pow2[i - ] << ) % moder;
}
} inline void solve() {
for(int i = ; i < lim; i++)
for(int j = i; j < lim; j += i)
cnt[i] += counter[j]; for(int i = lim - ; i > ; i--) {
if(!cnt[i]) continue;
f[i] = (cnt[i] * 1LL * pow2[cnt[i] - ]) % moder;
for(int j = i << ; j < lim; j += i)
f[i] = (f[i] - f[j]) % moder;
if(f[i] < ) f[i] += moder;
res = (res + (f[i] * 1LL * i) % moder) % moder;
} printf("%d\n", res);
} int main() {
init();
solve();
return ;
}
更新日志
- 2017-11-30 更新两处指数错误
Codeforces 839D Winter is here - 暴力 - 容斥原理的更多相关文章
- Codeforces 839D Winter is here(容斥原理)
[题目链接] http://codeforces.com/contest/839/problem/D [题目大意] 给出一些数,求取出一些数,当他们的GCD大于0时,将数量乘GCD累加到答案上, 求累 ...
- CodeForces 839D - Winter is here | Codeforces Round #428 (Div. 2)
赛后听 Forever97 讲的思路,强的一匹- - /* CodeForces 839D - Winter is here [ 数论,容斥 ] | Codeforces Round #428 (Di ...
- Codeforces 839D Winter is here【数学:容斥原理】
D. Winter is here time limit per test:3 seconds memory limit per test:256 megabytes input:standard i ...
- Codeforces 839D Winter is here
链接:CF839D 题目大意 给定一个数组大小为\(n(1\leq n\leq 200000)\)的数组\(a\),满足\(1\leq a_i \leq 1000000\). 选择其中任意\(len\ ...
- hdu4135-Co-prime & Codeforces 547C Mike and Foam (容斥原理)
hdu4135 求[L,R]范围内与N互质的数的个数. 分别求[1,L]和[1,R]和n互质的个数,求差. 利用容斥原理求解. 二进制枚举每一种质数的组合,奇加偶减. #include <bit ...
- Codeforces Gym 100015H Hidden Code 暴力
Hidden Code 题目连接: http://codeforces.com/gym/100015/attachments Description It's time to put your hac ...
- Codeforces gym 100685 A. Ariel 暴力
A. ArielTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100685/problem/A Desc ...
- Codeforces Gym 100637G G. #TheDress 暴力
G. #TheDress Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100637/problem/G ...
- [ An Ac a Day ^_^ ] CodeForces 691F Couple Cover 花式暴力
Couple Cover Time Limit: 3000MS Memory Limit: 524288KB 64bit IO Format: %I64d & %I64u Descri ...
随机推荐
- 【转载】C#中List集合使用AddRange方法将一个集合加入到指定集合末尾
C#编程开发过程中,List集合是时常使用到的集合对象,如果在List集合的操作中需要将1个List集合加入到另一个List集合的末尾,则可以使用List集合的AddRange方法来实现,AddRan ...
- Django:RestFramework之-------渲染器
12.渲染器 from rest_framework.renderers import JSONRenderer,BrowsableAPIRenderer,AdminRenderer class Te ...
- Koa2 和 Express 中间件对比
koa2 中间件 koa2的中间件是通过 async await 实现的,中间件执行顺序是"洋葱圈"模型. 中间件之间通过next函数联系,当一个中间件调用 next() 后,会将 ...
- Abp vNext抽茧剥丝01 使用using临时更改当前租户
在Abp vNext中,如果开启了多租户功能,在业务代码中默认使用当前租户的数据,如果我们需要更改当前租户,可以使用下面的方法 /* 此时当前租户 */ using (CurrentTenant.Ch ...
- WPF 依赖属性前言
WPF 依赖属性前言 在.net中,我们可以属性来获取或设置字段的值,不需要在编写额外的get和set方法,但这有一个前提,那就是需要在对象中拥有一个字段,才能在此字段的基础上获取或设置字段的值, ...
- etcd数据备份和恢复--转发
对于etcd api v3数据备份与恢复方法 # export ETCDCTL_API=3 # etcdctl --endpoints localhost:2379 snapshot save sna ...
- RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems
一.摘要 为了解决协同过滤的稀疏性和冷启动问题,社交网络或项目属性等辅助信息被用来提高推荐性能. 考虑到知识图谱是边信息的来源,为了解决现有的基于嵌入和基于路径的知识图谱感知重构方法的局限性,本文提出 ...
- 类型擦除对Java调用Kotlin的影响
@JvmName: 扩展方法相关: 先来定义一个扩展方法: 好,接下来再来定义一个扩展函数: 此时报错了..看一下错误提示: 其中给的提示有点奇怪,第一个是很明显咱们的扩展函数木有接收参数嘛,为啥提示 ...
- P3193 [HNOI2008]GT考试(KMP+矩阵乘法加速dp)
P3193 [HNOI2008]GT考试 思路: 设\(dp(i,j)\)为\(N\)位数从高到低第\(i\)位时,不吉利数字在第\(j\)位时的情况总数,那么转移方程就为: \[dp(i,j)=dp ...
- JS数组扁平化(flat)
需求:多维数组=>一维数组 let ary = [1, [2, [3, [4, 5]]], 6]; let str = JSON.stringify(ary); 第0种处理:直接的调用 arr_ ...