Winter is here at the North and the White Walkers are close. John Snow has an army consisting of n soldiers. While the rest of the world is fighting for the Iron Throne, he is going to get ready for the attack of the White Walkers.

He has created a method to know how strong his army is. Let the i-th soldier’s strength be ai. For some k he calls i1, i2, ..., ik a clan if i1 < i2 < i3 < ... < ik and gcd(ai1, ai2, ..., aik) > 1 . He calls the strength of that clan k·gcd(ai1, ai2, ..., aik). Then he defines the strength of his army by the sum of strengths of all possible clans.

Your task is to find the strength of his army. As the number may be very large, you have to print it modulo 1000000007 (109 + 7).

Greatest common divisor (gcd) of a sequence of integers is the maximum possible integer so that each element of the sequence is divisible by it.

Input

The first line contains integer n (1 ≤ n ≤ 200000) — the size of the army.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 1000000) — denoting the strengths of his soldiers.

Output

Print one integer — the strength of John Snow's army modulo 1000000007 (109 + 7).

Examples
input
3
3 3 1
output
12
input
4
2 3 4 6
output
39
Note

In the first sample the clans are {1}, {2}, {1, 2} so the answer will be 1·3 + 1·3 + 2·3 = 12


  题目大意 给定n,集合A,设表示把这个集合内的所有数求最大公约数的结果,求

  根据常用套路,套一个循环去枚举gcd的结果,然后再求系数,于是有

  现在设,于是有

  现在考虑求f(i)。可以想到容斥原理。

  先假设所有的集合的gcd是i的倍数都符合条件然后计算答案(给定数集A中所有是i的倍数的数组成的集合任选一个子集),然后再减去f(2i), f(3i),...

  现在要面临两个问题

  1. 第一次求值如何处理?
    首先把式子写出来,设这个集合的大小为n,那么有

    因为

    对两边同时进行求导得到

    再带入x = 1得到

  2. 为是i的倍数的数的个数,如何快速求出?

    根据定义式有

    显然超时。虽然这是暴力,但是不够优美。
    表示,集合A中恰好为i的数有多少个。

    然后就可以得到总时间复杂度为O(mlog2m)的暴力:

  最后求求和就完事了。

Code

 /**
* Codeforces
* Problem#839D
* Accepted
* Time: 171ms
* Memory: 15400k
*/
#include <bits/stdc++.h>
using namespace std; const int lim = 1e6 + ;
const int moder = 1e9 + ; int n;
int *a;
int *pow2;
int cnt[lim], counter[lim];
int f[lim];
int res = ; inline void init() {
scanf("%d", &n);
a = new int[(n + )];
pow2 = new int[(n + )];
pow2[] = ;
for(int i = ; i <= n; i++) {
scanf("%d", a + i);
counter[a[i]]++;
pow2[i] = (pow2[i - ] << ) % moder;
}
} inline void solve() {
for(int i = ; i < lim; i++)
for(int j = i; j < lim; j += i)
cnt[i] += counter[j]; for(int i = lim - ; i > ; i--) {
if(!cnt[i]) continue;
f[i] = (cnt[i] * 1LL * pow2[cnt[i] - ]) % moder;
for(int j = i << ; j < lim; j += i)
f[i] = (f[i] - f[j]) % moder;
if(f[i] < ) f[i] += moder;
res = (res + (f[i] * 1LL * i) % moder) % moder;
} printf("%d\n", res);
} int main() {
init();
solve();
return ;
}

更新日志

  • 2017-11-30 更新两处指数错误

Codeforces 839D Winter is here - 暴力 - 容斥原理的更多相关文章

  1. Codeforces 839D Winter is here(容斥原理)

    [题目链接] http://codeforces.com/contest/839/problem/D [题目大意] 给出一些数,求取出一些数,当他们的GCD大于0时,将数量乘GCD累加到答案上, 求累 ...

  2. CodeForces 839D - Winter is here | Codeforces Round #428 (Div. 2)

    赛后听 Forever97 讲的思路,强的一匹- - /* CodeForces 839D - Winter is here [ 数论,容斥 ] | Codeforces Round #428 (Di ...

  3. Codeforces 839D Winter is here【数学:容斥原理】

    D. Winter is here time limit per test:3 seconds memory limit per test:256 megabytes input:standard i ...

  4. Codeforces 839D Winter is here

    链接:CF839D 题目大意 给定一个数组大小为\(n(1\leq n\leq 200000)\)的数组\(a\),满足\(1\leq a_i \leq 1000000\). 选择其中任意\(len\ ...

  5. hdu4135-Co-prime & Codeforces 547C Mike and Foam (容斥原理)

    hdu4135 求[L,R]范围内与N互质的数的个数. 分别求[1,L]和[1,R]和n互质的个数,求差. 利用容斥原理求解. 二进制枚举每一种质数的组合,奇加偶减. #include <bit ...

  6. Codeforces Gym 100015H Hidden Code 暴力

    Hidden Code 题目连接: http://codeforces.com/gym/100015/attachments Description It's time to put your hac ...

  7. Codeforces gym 100685 A. Ariel 暴力

    A. ArielTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100685/problem/A Desc ...

  8. Codeforces Gym 100637G G. #TheDress 暴力

    G. #TheDress Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100637/problem/G ...

  9. [ An Ac a Day ^_^ ] CodeForces 691F Couple Cover 花式暴力

    Couple Cover Time Limit: 3000MS   Memory Limit: 524288KB   64bit IO Format: %I64d & %I64u Descri ...

随机推荐

  1. Oracle 11g 体系结构概述

    一.Oracle 体系结构主要用来分析数据库的组成.工作过程与原理,以及数据在数据库中的组织与管理机制. Oracle 数据库是一个逻辑概念,而不是物理概念上安装了 Oracle 数据库管理系统的服务 ...

  2. HttpClient实战三:Spring整合HttpClient连接池

    简介 在微服务架构或者REST API项目中,使用Spring管理Bean是很常见的,在项目中HttpClient使用的一种最常见方式就是:使用Spring容器XML配置方式代替Java编码方式进行H ...

  3. java服务端集成极光消息推送--详细开发步骤

    1.极光推送账号准备 要使用极光消息推送必须先在官方网站上注册账号,并添加应用. 产品介绍:https://docs.jiguang.cn/jpush/guideline/intro/ 注册开发者账号 ...

  4. 巧用浏览器F12调试器定位系统前后端bug-转载

    做测试的小伙伴可能用过httpwatch,firebug,fiddler,charles等抓包(数据包)工具,但实际上除了这些还有一个简单实用并的抓包工具,那就是浏览器的F12调试器. httpwat ...

  5. 【DATAGUARD】物理dg在主库丢失归档文件的情况下的恢复(七)

    [DATAGUARD]物理dg在主库丢失归档文件的情况下的恢复(七) 一.1  BLOG文档结构图 一.2  前言部分 一.2.1  导读 各位技术爱好者,看完本文后,你可以掌握如下的技能,也可以学到 ...

  6. MySQL Percona Toolkit--pt-osc执行SQL命令

    pt-osc执行日志 在对数据量为100000的表tb004做DROP COLUMN操作,pt-osc工具日志为: Operation, tries, wait: analyze_table, , c ...

  7. select下拉框小DemoA

    <html> <head> <meta charset="utf-8"> <script src="jquery-1.9.1.m ...

  8. 利用yum下载rpm包并批量安装

    一.下载rpm包 方法一:downloadonly 1.yum自动下载RPM包及其所有依赖的包至/root/rpm目录: yum install yum-plugin-downloadonly yum ...

  9. PHP编程实现阳历转换为阴历的方法

    php类: 2 /** 3 *PHP编程实现阳历转换为阴历的方法 4 *根据实际情况所需进行调用 5 * 6 / 7 10 <?php class Lunar { public $MIN_YEA ...

  10. 剑指offer:跳台阶问题

    基础跳台阶 题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解题思路 这道题就是斐波那契数列的变形问法,因为跳上第N个台阶 ...