spark sql执行insert overwrite table时,写到新表或者新分区的文件个数,有可能是200个,也有可能是任意个,为什么会有这种差别?

首先看一下spark sql执行insert overwrite table流程:

  • 1 创建临时目录,比如2 将数据写到临时目录;

    • .hive-staging_hive_2018-06-23_00-39-39_825_3122897139441535352-2312/-ext-10000
  • 2 执行loadTable或loadPartition将临时目录数据move到正式目录;

对应的代码为:

org.apache.spark.sql.hive.execution.InsertIntoHiveTable

case class InsertIntoHiveTable(
table: MetastoreRelation,
partition: Map[String, Option[String]],
child: SparkPlan,
overwrite: Boolean,
ifNotExists: Boolean) extends UnaryExecNode {
...
protected[sql] lazy val sideEffectResult: Seq[InternalRow] = {
...
val tmpLocation = getExternalTmpPath(tableLocation, hadoopConf)
val fileSinkConf = new FileSinkDesc(tmpLocation.toString, tableDesc, false)
...
@transient val outputClass = writerContainer.newSerializer(table.tableDesc).getSerializedClass
saveAsHiveFile(child.execute(), outputClass, fileSinkConf, jobConfSer, writerContainer)
... private def saveAsHiveFile(
rdd: RDD[InternalRow],
valueClass: Class[_],
fileSinkConf: FileSinkDesc,
conf: SerializableJobConf,
writerContainer: SparkHiveWriterContainer): Unit = {
assert(valueClass != null, "Output value class not set")
conf.value.setOutputValueClass(valueClass) val outputFileFormatClassName = fileSinkConf.getTableInfo.getOutputFileFormatClassName
assert(outputFileFormatClassName != null, "Output format class not set")
conf.value.set("mapred.output.format.class", outputFileFormatClassName) FileOutputFormat.setOutputPath(
conf.value,
SparkHiveWriterContainer.createPathFromString(fileSinkConf.getDirName(), conf.value))
log.debug("Saving as hadoop file of type " + valueClass.getSimpleName)
writerContainer.driverSideSetup()
sqlContext.sparkContext.runJob(rdd, writerContainer.writeToFile _)
writerContainer.commitJob()
}

下面先看第一步创建临时目录过程,即getExternalTmpPath

val stagingDir = hadoopConf.get("hive.exec.stagingdir", ".hive-staging")

  def getExternalTmpPath(path: Path, hadoopConf: Configuration): Path = {
val extURI: URI = path.toUri
if (extURI.getScheme == "viewfs") {
getExtTmpPathRelTo(path.getParent, hadoopConf)
} else {
new Path(getExternalScratchDir(extURI, hadoopConf), "-ext-10000")
}
} private def getExternalScratchDir(extURI: URI, hadoopConf: Configuration): Path = {
getStagingDir(new Path(extURI.getScheme, extURI.getAuthority, extURI.getPath), hadoopConf)
} private def getStagingDir(inputPath: Path, hadoopConf: Configuration): Path = {
val inputPathUri: URI = inputPath.toUri
val inputPathName: String = inputPathUri.getPath
val fs: FileSystem = inputPath.getFileSystem(hadoopConf)
val stagingPathName: String =
if (inputPathName.indexOf(stagingDir) == -) {
new Path(inputPathName, stagingDir).toString
} else {
inputPathName.substring(, inputPathName.indexOf(stagingDir) + stagingDir.length)
}
val dir: Path =
fs.makeQualified(
new Path(stagingPathName + "_" + executionId + "-" + TaskRunner.getTaskRunnerID))
logDebug("Created staging dir = " + dir + " for path = " + inputPath)
try {
if (!FileUtils.mkdir(fs, dir, true, hadoopConf)) {
throw new IllegalStateException("Cannot create staging directory '" + dir.toString + "'")
}
fs.deleteOnExit(dir)
} catch {
case e: IOException =>
throw new RuntimeException(
"Cannot create staging directory '" + dir.toString + "': " + e.getMessage, e) }
return dir
} private def executionId: String = {
val rand: Random = new Random
val format = new SimpleDateFormat("yyyy-MM-dd_HH-mm-ss_SSS", Locale.US)
"hive_" + format.format(new Date) + "_" + Math.abs(rand.nextLong)
}

临时目录组成为【.hive-staging(配置hive.exec.stagingdir)】_【hive(硬编码)】_【2018-06-23_00-39-39_825(时分秒)】_【3122897139441535352(随机串)】_【2312(taskId)】/-ext-10000(硬编码)

下面看写文件过程,即

sqlContext.sparkContext.runJob(rdd, writerContainer.writeToFile _)

org.apache.spark.SparkContext

 /**
* Run a job on all partitions in an RDD and return the results in an array.
*/
def runJob[T, U: ClassTag](rdd: RDD[T], func: (TaskContext, Iterator[T]) => U): Array[U] = {
runJob(rdd, func, until rdd.partitions.length)
}

可见是将rdd逐个分区执行写入操作,rdd有多少个分区就会写入多少个文件,rdd是通过child.execute返回的,即SparkPlan.execute,下面看SparkPlan

org.apache.spark.sql.execution.SparkPlan

final def execute(): RDD[InternalRow] = executeQuery {
doExecute()
} protected def doExecute(): RDD[InternalRow]

doExecute是抽象方法,执行计划中的过程都对应到SparkPlan的子类,比如Project对应ProjectExec,SortMergeJoin对应SortMergeJoinExec;

SparkPlan是由SparkPlanner生成的,下面看SparkPlanner:

org.apache.spark.sql.execution.SparkPlanner

  def numPartitions: Int = conf.numShufflePartitions

这里直接取的是SQLConf.numShufflePartitions,下面看SQLConf:

org.apache.spark.sql.internal.SQLConf

  val SHUFFLE_PARTITIONS = SQLConfigBuilder("spark.sql.shuffle.partitions")
.doc("The default number of partitions to use when shuffling data for joins or aggregations.")
.intConf
.createWithDefault() def numShufflePartitions: Int = getConf(SHUFFLE_PARTITIONS)

这里取的是配置spark.sql.shuffle.partitions,默认200;那么分区数量是怎样用到的?下面看BasicOperators:

org.apache.spark.sql.execution.SparkStrategies.BasicOperators

def numPartitions: Int = self.numPartitions

    def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
...
case logical.RepartitionByExpression(expressions, child, nPartitions) =>
exchange.ShuffleExchange(HashPartitioning(
expressions, nPartitions.getOrElse(numPartitions)), planLater(child)) :: Nil

可见shuffle过程会根据numPartitions来创建HashPartitioning,如果sql执行过程需要shuffle(比如有join,group by等操作),那么默认会写200个文件;如果sql执行过程没有shuffle,那么会由HiveTableScan和Filter等来决定写多少个文件;

也可以通过执行计划来看,如果有shuffle过程,执行计划中通常有这么一步:

:  +- Exchange(coordinator id: ) hashpartitioning(id#, ), coordinator[target post-shuffle partition size: ]

其中hashpartitioning(id#60, 200)中的200就是spark.sql.shuffle.partitions的默认值;

附ShuffleExchange过程:

org.apache.spark.sql.execution.exchange.ShuffleExchange

def apply(newPartitioning: Partitioning, child: SparkPlan): ShuffleExchange = {
ShuffleExchange(newPartitioning, child, coordinator = Option.empty[ExchangeCoordinator])
} protected override def doExecute(): RDD[InternalRow] = attachTree(this, "execute") {
// Returns the same ShuffleRowRDD if this plan is used by multiple plans.
if (cachedShuffleRDD == null) {
cachedShuffleRDD = coordinator match {
case Some(exchangeCoordinator) =>
val shuffleRDD = exchangeCoordinator.postShuffleRDD(this)
assert(shuffleRDD.partitions.length == newPartitioning.numPartitions)
shuffleRDD
case None =>
val shuffleDependency = prepareShuffleDependency()
preparePostShuffleRDD(shuffleDependency)
}
}
cachedShuffleRDD
} /**
* Returns a [[ShuffleDependency]] that will partition rows of its child based on
* the partitioning scheme defined in `newPartitioning`. Those partitions of
* the returned ShuffleDependency will be the input of shuffle.
*/
private[exchange] def prepareShuffleDependency()
: ShuffleDependency[Int, InternalRow, InternalRow] = {
ShuffleExchange.prepareShuffleDependency(
child.execute(), child.output, newPartitioning, serializer)
} /**
* Returns a [[ShuffledRowRDD]] that represents the post-shuffle dataset.
* This [[ShuffledRowRDD]] is created based on a given [[ShuffleDependency]] and an optional
* partition start indices array. If this optional array is defined, the returned
* [[ShuffledRowRDD]] will fetch pre-shuffle partitions based on indices of this array.
*/
private[exchange] def preparePostShuffleRDD(
shuffleDependency: ShuffleDependency[Int, InternalRow, InternalRow],
specifiedPartitionStartIndices: Option[Array[Int]] = None): ShuffledRowRDD = {
// If an array of partition start indices is provided, we need to use this array
// to create the ShuffledRowRDD. Also, we need to update newPartitioning to
// update the number of post-shuffle partitions.
specifiedPartitionStartIndices.foreach { indices =>
assert(newPartitioning.isInstanceOf[HashPartitioning])
newPartitioning = UnknownPartitioning(indices.length)
}
new ShuffledRowRDD(shuffleDependency, specifiedPartitionStartIndices)
} /**
* Returns a [[ShuffleDependency]] that will partition rows of its child based on
* the partitioning scheme defined in `newPartitioning`. Those partitions of
* the returned ShuffleDependency will be the input of shuffle.
*/
def prepareShuffleDependency(
rdd: RDD[InternalRow],
outputAttributes: Seq[Attribute],
newPartitioning: Partitioning,
serializer: Serializer): ShuffleDependency[Int, InternalRow, InternalRow] = {
val part: Partitioner = newPartitioning match {
case RoundRobinPartitioning(numPartitions) => new HashPartitioner(numPartitions)
case HashPartitioning(_, n) =>
new Partitioner {
override def numPartitions: Int = n
// For HashPartitioning, the partitioning key is already a valid partition ID, as we use
// `HashPartitioning.partitionIdExpression` to produce partitioning key.
override def getPartition(key: Any): Int = key.asInstanceOf[Int]
}
case RangePartitioning(sortingExpressions, numPartitions) =>
// Internally, RangePartitioner runs a job on the RDD that samples keys to compute
// partition bounds. To get accurate samples, we need to copy the mutable keys.
val rddForSampling = rdd.mapPartitionsInternal { iter =>
val mutablePair = new MutablePair[InternalRow, Null]()
iter.map(row => mutablePair.update(row.copy(), null))
}
implicit val ordering = new LazilyGeneratedOrdering(sortingExpressions, outputAttributes)
new RangePartitioner(numPartitions, rddForSampling, ascending = true)
case SinglePartition =>
new Partitioner {
override def numPartitions: Int =
override def getPartition(key: Any): Int =
}
case _ => sys.error(s"Exchange not implemented for $newPartitioning")
// TODO: Handle BroadcastPartitioning.
}
def getPartitionKeyExtractor(): InternalRow => Any = newPartitioning match {
case RoundRobinPartitioning(numPartitions) =>
// Distributes elements evenly across output partitions, starting from a random partition.
var position = new Random(TaskContext.get().partitionId()).nextInt(numPartitions)
(row: InternalRow) => {
// The HashPartitioner will handle the `mod` by the number of partitions
position +=
position
}
case h: HashPartitioning =>
val projection = UnsafeProjection.create(h.partitionIdExpression :: Nil, outputAttributes)
row => projection(row).getInt()
case RangePartitioning(_, _) | SinglePartition => identity
case _ => sys.error(s"Exchange not implemented for $newPartitioning")
}
val rddWithPartitionIds: RDD[Product2[Int, InternalRow]] = {
if (needToCopyObjectsBeforeShuffle(part, serializer)) {
rdd.mapPartitionsInternal { iter =>
val getPartitionKey = getPartitionKeyExtractor()
iter.map { row => (part.getPartition(getPartitionKey(row)), row.copy()) }
}
} else {
rdd.mapPartitionsInternal { iter =>
val getPartitionKey = getPartitionKeyExtractor()
val mutablePair = new MutablePair[Int, InternalRow]()
iter.map { row => mutablePair.update(part.getPartition(getPartitionKey(row)), row) }
}
}
} // Now, we manually create a ShuffleDependency. Because pairs in rddWithPartitionIds
// are in the form of (partitionId, row) and every partitionId is in the expected range
// [0, part.numPartitions - 1]. The partitioner of this is a PartitionIdPassthrough.
val dependency =
new ShuffleDependency[Int, InternalRow, InternalRow](
rddWithPartitionIds,
new PartitionIdPassthrough(part.numPartitions),
serializer) dependency
}

spark sql插入表时的文件个数研究的更多相关文章

  1. 【原创】大叔经验分享(23)spark sql插入表时的文件个数研究

    spark sql执行insert overwrite table时,写到新表或者新分区的文件个数,有可能是200个,也有可能是任意个,为什么会有这种差别? 首先看一下spark sql执行inser ...

  2. spark sql建表的异常

    在使用spark sql创建表的时候提示如下错误: missing EOF at 'from' near ')' 可以看下你的建表语句中是不是create external table ....   ...

  3. Django框架创建数据库表时setting文件配置_模型层

    若想将模型转为mysql数据库中的表,需要在settings中配置: 一. 确保配置文件中的INSTALLED_APPS中写入我们创建的app名称-->bms INSTALLED_APPS = ...

  4. SQL Server 表所在的文件组

    SELECT  o.[name] ,-- o.[type], i.[name], i.[index_id],         f.[name] FROM    sys.indexes i        ...

  5. spark SQL (四)数据源 Data Source----Parquet 文件的读取与加载

    spark SQL Parquet 文件的读取与加载 是由许多其他数据处理系统支持的柱状格式.Spark SQL支持阅读和编写自动保留原始数据模式的Parquet文件.在编写Parquet文件时,出于 ...

  6. Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets Guide | ApacheCN

    Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession ...

  7. Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets

    Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession ...

  8. Spark SQL 官方文档-中文翻译

    Spark SQL 官方文档-中文翻译 Spark版本:Spark 1.5.2 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 Data ...

  9. Spark SQL 之 Data Sources

    #Spark SQL 之 Data Sources 转载请注明出处:http://www.cnblogs.com/BYRans/ 数据源(Data Source) Spark SQL的DataFram ...

随机推荐

  1. 学习Kubernetes,这些负载均衡知识点得知道!

    负载均衡 负载均衡是高可用架构的一个关键组件,主要用来提高性能和可用性,通过负载均衡将流量分发到多个服务器,同时多服务器能够消除这部分的单点故障. 一个没有使用负载均衡的Web架构一般会长得像这样: ...

  2. 样条函数后续(java)--可在hive中执行的函数

    之前写的样条插值算法只能在本地执行,但是我想要的是可在hive中执行的jar包,为了符合我的要求,经过痛苦.气愤.悲伤等一系列过程,终于实现了: 想要实现可在hive中执行的jar包,以下是具体步骤: ...

  3. spring-boot maven插件

    Spring Boot Maven Plugin提供了Spring Boot的Maven支持,允许你打包可执行文件和war文件,并且就地运行. 1.Spring Boot Maven plugin的5 ...

  4. 更改intellij高亮字体背景颜色

    intellij工具中依次进入file -> settings -> editor -> colors & fonts -> general,在右侧窗口中将result ...

  5. wait,waitpid学习测试

    用man wait学习wait waitpid的使用 wait()函数功能:wait()函数使父进程暂停执行,直到它的一个子进程结束为止,该函数的返回值是终止运行的子进程的PID. 参数status所 ...

  6. logstash-output-jdbc遇到connection is not available,request time out after 10000ms的问题解决

    上一篇logstash-output-jdbc使用中提到“运行bin/logstash -f test.conf时可能提示注册插件失败”,通过分析详细的错误日志,发现其赫然写着“connection ...

  7. Coins in a Line

    Description There are n coins in a line. Two players take turns to take one or two coins from right ...

  8. C Primer Plus--C存储类、链接和内存管理之动态分配内存及类型限定词

    目录 存储类说明符 存储类和函数 动态分配内存 malloc函数 free函数 calloc函数 动态分配内存的缺点 C类型限定关键字 constant定义全局常量 volatile关键字 restr ...

  9. ACwing : 798. 差分矩阵

    不得不说之前的差分我真的是掌握的不好.. 一维差分确实简单一看就会,但是学会了之后却并不能灵活的运用. 而二维的差分我甚至还琢磨了很长时间 懒得画图所以没有图..对于二维差分的定义,百度百科是这么说的 ...

  10. Mysql插入多条数据测试

    --新建存储过程 create procedure doinsert3() begin declare i int; declare j int; set i = 0; set j = 0; whil ...