题目描述

根据一些书上的记载,上帝的一次失败的创世经历是这样的:
  第一天,上帝创造了一个世界的基本元素,称做“元”。
  第二天,上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。
  第三天,上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。
  第四天,上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。
  如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。
  然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……
  然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。
  至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?
  上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。
  你可以认为上帝从“α”到“θ”一共创造了10^9次元素,或10^18次,或者干脆∞次。
  一句话题意

输入格式

多组数据,先输入一个整数T,接下来T行,每行一个正整数p,代表你需要取模的值。

输出格式

T行,每行一个正整数,为答案对p取模后的值
输入样例
  3
  2
  3
  6
输出样例
  0
  1
  4
提示
  对于100%的数据,T<=1000,p<=10^7

分析

做这题第一眼还想用mod-2,然后发现p不是质数而且还不会写。。。。。。

索性直接看题解,滚去学了一下欧拉定理和扩展欧拉定理

对于不互质的两个数a与b有以下关系

$$a^{k}\equiv a^{k\%{\varphi (b)}+\varphi (b)}(mod \ b)$$

所以直接对指数递归下去做就好,模数因为是取欧拉函数所以肯定递减,模数减到1的时候就可以直接返回0了

Code

#include<cstdio>
int T;
int phi(int x)
{
int ans=x;
for(int i=;1ll*i*i<=x;i++)
if(x%i==){ans=ans/i*(i-);while(x%i==)x/=i;}
if(x!=)ans=ans/x*(x-);
return ans;
}
int qp(int a,int k,int p)
{
int res=;
while(k)
{
if(k&)res=1ll*a*res%p;
a=1ll*a*a%p;k>>=;
}
return res;
}
int solve(int p)
{
if(p==)return ;
int x=phi(p);
return qp(,solve(x)+x,p);
}
int main()
{
scanf("%d",&T);
for(int t=,p;t<=T;t++)
scanf("%d",&p),printf("%d\n",solve(p));
}

【洛谷】P4139 上帝与集合的正确用法的更多相关文章

  1. 洛谷 P4139 上帝与集合的正确用法 解题报告

    P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新 ...

  2. 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]

    题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...

  3. 题解-洛谷P4139 上帝与集合的正确用法

    上帝与集合的正确用法 \(T\) 组数据,每次给定 \(p\),求 \[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p ...

  4. 洛谷 P4139 上帝与集合的正确用法

    题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...

  5. 洛谷P4139 上帝与集合的正确用法 拓欧

    正解:拓展欧拉定理 解题报告: 首先放上拓欧公式? if ( b ≥ φ(p) )  ab ≡ ab%φ(p)+φ(p)(mod p)else ab≡ab mod φ(p) (mod p) 首先利用扩 ...

  6. [洛谷P4139]上帝与集合的正确用法

    题目大意:多次询问,每次给你$p$询问$2^{2^{2^{\dots}}}\bmod p$ 题解:扩展欧拉定理,求出$\varphi(p)$即可.因为$2^{2^{2^{\dots}}}>> ...

  7. P4139 上帝与集合的正确用法

    本题是欧拉定理的应用.我这种蒟蒻当然不知道怎么证明啦! 那么我们就不证明了,来直接看结论: ab≡⎧⎩⎨⎪⎪ab%φ(p)abab%φ(p)+φ(p)gcd(a,p)=1gcd(a,p)≠1,b< ...

  8. Luogu P4139 上帝与集合的正确用法【扩展欧拉定理】By cellur925

    题目传送门 题目中的式子很符合扩展欧拉定理的样子.(如果你还不知扩展欧拉定理,戳).对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1. 另外,本题中好像必须要用快速乘的样子...否则无法通过 ...

  9. luogu P4139 上帝与集合的正确用法(扩展欧拉定理)

    本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\ ...

随机推荐

  1. 【开发工具】- Xshell工具的下载和安装

    下载地址:https://www.netsarang.com/zh/free-for-home-school/ Xshell 是一个强大的安全终端模拟软件,它支持SSH1, SSH2, 以及Micro ...

  2. ZK中使用JS读取客户端txt文件内容问题

    最近写一个需求时遇到一个问题,用户需要通过点击一个按钮直接读取他自己电脑上D盘的一个txt文件内容显示到页面,因为项目现在是用ZK写的.我对于ZK也是刚刚了解不就,很多都还不是很熟.起初我是想用io流 ...

  3. ElementUI 源码定制防坑指南

    背景 我司OA系统公文管理模块Office在线编辑使用的是金格IWebOffice中间件[PPAPI插件,通过<object>标签加载],IWebOffice在chrome中设置div盒子 ...

  4. Python——循环语句

    while循环: 通常使用在当满足某一条件时进行的循环语句. 例如: while True: #当为True时进行循环,这个搭配就是死循环 print(1) while count < 10: ...

  5. 解决通过vue-router打开tab页,下次进入还是上次history缓存的界面状态的问题

    一.问题描述: 1. 跳转模式:界面A-->界面B(界面A中通过 this.$router.push({name:'组件B名称', params: {参数}}) 通过打开新tab页的方式打开界面 ...

  6. c# Match类

  7. JQuery EasyUI treegrid展开与折叠,以及数据加载两次的问题

    问题:做项目的时候遇到代码生成的页面,只默认展开了一级节点,每次操作之后刷新还要手动一级一级展开,太麻烦了 官方API:http://www.jeasyui.net/plugins/186.html ...

  8. HTML&CSS基础-常用选择器

    HTML&CSS基础-常用选择器 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.html源代码 <!DOCTYPE html> <html> & ...

  9. 【Linux】缺少service命令的解决办法

    执行保存防火墙策略报错:提示没有找到service的文件遇到这个问题后,执行下面的命令,需要安装一个包initscripts rpm -qa | grep initscripts yum list | ...

  10. Java实现数据批量导入mysql数据库

    本文完全照搬别人的. 原文标题:Java实现数据批量导入数据库(优化速度-2种方法) 原文地址:https://blog.csdn.net/qy20115549/article/details/526 ...