目标检测论文解读5——YOLO v1
背景
之前热门的目标检测方法都是two stage的,即分为region proposal和classification两个阶段,本文是对one stage方法的初次探索。
方法
首先看一下模型的网络结构,输入的原图片,经过24个卷积层提取特征,全连接层输出一个7*7*30的tensor,这个tensor里面就包含我们预测的结果了。
那么这个7*7*30的tensor包含哪些信息呢?
首先,7*7可以映射到448*448的原图片中,得到7*7个64*64的grid cell,对于原图中的每一个目标,中心点落在哪个grid cell里,就交给它来预测。
而每个grid cell可以预测两个目标的位置(x,y,w,h),还有他们的置信度confidence=Pr(Object)*IOU,但是论文里面规定两个目标类别一致,所以再加上class属性,一共20种。
2*4+2+20=30
总结
YOLO v1比较简单,用回归的思想做检测,但在读论文的时候明显能感觉到有很多人为的特殊规定,所以效果也一般般。
缺点
检测的位置不准;密集物体检测的效果不好(只要一个grid cell里面的物体多于2个就检测不到了)。
目标检测论文解读5——YOLO v1的更多相关文章
- 目标检测论文解读7——YOLO v2
背景 YOLO v1检测效果不好,且无法应用于检测密集物体. 方法 YOLO v2是在YOLO v1的基础上,做出如下改进. (1)引入很火的Batch Normalization,提高mAP和训练速 ...
- 目标检测论文解读8——YOLO v3
背景 要在YOLO v2上作出改进. 方法 (1)分类器改变.从softmax loss改变为logistic loss,作用是处理符合标签,softmax loss只能用来预测只有一种类别的目标,l ...
- AAAI2019 | 基于区域分解集成的目标检测 论文解读
Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...
- 目标检测论文解读6——SSD
背景 R-CNN系列算法检测速度不够快,YOLO v1检测准确率较低,而且无法检测到密集目标. 方法 SSD算法跟YOLO类似,都属于one stage的算法,即通过回归算法直接从原图得到预测结果,为 ...
- 目标检测论文解读1——Rich feature hierarchies for accurate object detection and semantic segmentation
背景 在2012 Imagenet LSVRC比赛中,Alexnet以15.3%的top-5 错误率轻松拔得头筹(第二名top-5错误率为26.2%).由此,ConvNet的潜力受到广泛认可,一炮而红 ...
- 目标检测论文解读10——DSSD
背景 SSD算法在检测小目标时精度并不高,本文是在在SSD的基础上做出一些改进,引入卷积层,能综合上下文信息,提高模型性能. 理解 Q1:DSSD和SSD的区别有哪些? (1)SSD是一层一层下采样, ...
- 目标检测论文解读13——FPN
引言 对于小目标通常需要用到多尺度检测,作者提出的FPN是一种快速且效果好的多尺度检测方法. 方法 a,b,c是之前的方法,其中a,c用到了多尺度检测的思想,但他们都存在明显的缺点. a方法:把每图片 ...
- 目标检测论文解读12——RetinaNet
引言 这篇论文深刻分析了one-stage的模型精度比two-stage更差的原因,并提出Focal Loss提高精度. 思路 在论文中,作者指出,造成one-stage模型精度差的原因主要是:正负样 ...
- 目标检测论文解读9——R-FCN
背景 基于ResNet 101的Faster RCNN速度很慢,本文通过提出Position-sensitive score maps(位置敏感分值图)来给模型加速. 方法 首先分析一下,为什么基于R ...
随机推荐
- php获取客户端公网ip代码
<?php /*如果是本地服务器获取客户端的ip地址是 127.0.0.1 如果是域名服务器获取客户端的是公网ip地址*/ function get_client_ip() { $ipaddre ...
- Tarjan 算法求 LCA / Tarjan 算法求强连通分量
[时光蒸汽喵带你做专题]最近公共祖先 LCA (Lowest Common Ancestors)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili tarjan LCA - YouTube Tarj ...
- [Gamma]Scrum Meeting#8
github 本次会议项目由PM召开,时间为6月3日晚上10点30分 时长15分钟 任务表格 人员 昨日工作 下一步工作 木鬼 撰写博客,组织例会 撰写博客,组织例会 swoip 前端显示屏幕,翻译坐 ...
- QuantLib 金融计算——基本组件之 Money 类
目录 QuantLib 金融计算--基本组件之 Money 类 概述 构造函数 成员函数 如果未做特别说明,文中的程序都是 python3 代码. QuantLib 金融计算--基本组件之 Money ...
- netty心跳机制解决
直接看别个的源码:https://blog.csdn.net/xt8469/article/details/84827443>>https://blog.csdn.net/xt8469/a ...
- Java学习:方法重载的使用规则
方法的重载 对于功能类似的方法来说,因为参数列表不一样,却需要记住那多不同的方法名称,太麻烦. 方法的重载(Overload):多个方法的名称一样,但是参数列表不一样.好处:只需要记住唯一一个方法名称 ...
- Java Objective-C AOP
Java Use an AOP library or byte-code engineering (BCEL, cglib, asm, etc) to create a sub-class on th ...
- C# vb .NET读取识别条形码线性条码ean-8
ean-8是比较常见的条形码编码规则类型的一种.如何在C#,vb等.NET平台语言里实现快速准确读取该类型条形码呢?答案是使用SharpBarcode! SharpBarcode是C#快速高效.准确的 ...
- 第一章 Maven 安装配置
Maven基于(POM)项目对象模型,通过一小段描述信息来管理项目的构建.文档.和报告的项目管理软件,类似于php 的管理构建工具composer. 有关详细的Maven学习,可以参考学习https: ...
- BUAA-OO-2019 第二单元总结
第五次作业 本次作业,需要完成的任务为单部多线程傻瓜调度(FAFS)电梯的模拟. 设计策略 先来先服务的单电梯是一个标准的"生产者-消费者"模型.虽然在本次作业中调度器似乎是不必要 ...