LOJ2026 JLOI/SHOI2016 成绩比较 组合、容斥
感觉自己越来越愚钝了qwq
先考虑从\(n-1\)个人里安排恰好\(k\)个人被碾压,然后再考虑如何分配分数,两者乘起来得到答案。
对于第一部分,可以考虑容斥:设\(f_i\)表示\(i\)个人被碾压,其他人随意分配是否被碾压的方案数,我们考虑所有比B成绩高的科目一定是由剩余的\(N-1-i\)个人构成,所以\(f_i = \prod\limits_{j=1}^M \binom{N - 1 - i}{r_j - 1}\)。那么我们要求的这一部分的答案就是\(\binom{N-1}{k} \sum\limits_{i=K}^{N-1} (-1)^{i-K} f_i \binom{i}{K}\)。
(悄悄说一句如果这里的容斥系数写成了\((-1)^{i-K}\)竟然有90分)
再考虑第二问。我们如果对于所有科目枚举B的分数,那么可以得到答案为\(\prod\limits_{i=1}^M \sum\limits_{j=1}^{u_i} j^{N-r_i} (u_i - j)^{r_i-1}\)。但是\(u_i\)太大而\(N\)很小,所以我们可以考虑枚举\(N\)个人总共出现的分数种数。又设\(g_{i,j}\)表示对于第\(i\)个学科,有\(j\)种分数分配给\(N\)个人的方案数,那么\(g_{i,j} = \sum\limits_{k=1}^{j} k^{N-r_i} (j - k)^{r_i-1}\)
我们知道如果恰好出现了\(j\)种分数,那么它的方案数乘上\(\binom{u_i}{j}\)就可以贡献答案,但是\(g_{i,j}\)显然求出的不只是出现\(j\)种分数的方案数,因为有可能某些分数没有出现,所以再次考虑容斥。设\(h_{i,j}\)表示对于第\(i\)个学科,恰好有\(j\)种分数出现的方案数,那么\(h_{i,j} = g_{i,j} - \sum\limits_{k=1}^{j-1} \binom{j}{k} h_{i,k}\)。这样就可以算出与上面\(O(\sum u_i)\)的式子结果相同的式子,而复杂度降为\(O(m^2n)\)。
LOJ2026 JLOI/SHOI2016 成绩比较 组合、容斥的更多相关文章
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- 【BZOJ4559】[JLoi2016]成绩比较 动态规划+容斥+组合数学
[BZOJ4559][JLoi2016]成绩比较 Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M-1的整数.一 ...
- bzoj3622已经没有什么好害怕的了 dp+组合+容斥(?)
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1033 Solved: 480[Submit][Status][ ...
- BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)
BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...
- BZOJ.4767.两双手(组合 容斥 DP)
题目链接 \(Description\) 棋盘上\((0,0)\)处有一个棋子.棋子只有两种走法,分别对应向量\((A_x,A_y),(B_x,B_y)\).同时棋盘上有\(n\)个障碍点\((x_i ...
- BZOJ.2339.[HNOI2011]卡农(思路 DP 组合 容斥)
题目链接 \(Description\) 有\(n\)个数,用其中的某些数构成集合,求构造出\(m\)个互不相同且非空的集合(\(m\)个集合无序),并满足每个数总共出现的次数为偶数的方案数. \(S ...
- bzoj3294[Cqoi2011]放棋子 dp+组合+容斥
3294: [Cqoi2011]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 755 Solved: 294[Submit][Status] ...
- bzoj 4767: 两双手 组合 容斥
题目链接 bzoj4767: 两双手 题解 不共线向量构成一组基底 对于每个点\((X,Y)\)构成的向量拆分 也就是对于方程组 $Ax * x + Bx * y = X $ \(Ay * x + B ...
- codeforces 571A--Lengthening Sticks(组合+容斥)
A. Lengthening Sticks time limit per test 1 second memory limit per test 256 megabytes input standar ...
随机推荐
- linux命令之------More命令
More命令 1)作用:命令类似cat,不过会以一页一页的形式显示,更方便使用者逐页阅读. 2)-num:一次显示的行数 3)-d:提示使用者,在画面下方显示[Press space to conti ...
- [Vue warn]: You are using the runtime-only build of Vue where the template compiler is not available
原文链接https://blog.csdn.net/xiaomajia029/article/details/88320233 问题描述: 原因分析:在项目配置的时候,默认 npm 包导出的是运行时构 ...
- sql查询最近7天数据(以年-月-日结果展示)
sql代码如下: , 查询结果如下:
- RecyclerView 实现快速滚动
RecyclerView 实现快速滚动 https://www.cnblogs.com/mamamia/p/8311449.html
- Python 开发版本指导与资源
Python 文档:https://docs.python.org/3/ 下载 下载这些文件 文档版本 Python 3.9(开发中) Python 3.8(稳定) Python 3.7(稳定) Py ...
- 009 SpringBoot+Swagger的使用
一:概述 1.说明 Swagger 是一个规范和完整的框架,用于生成.描述.调用和可视化 RESTful 风格的 Web 服务. 总体目标是使客户端和文件系统作为服务器以同样的速度来更新. 文件的方法 ...
- Tomcat Response encode
Character Encoding - Apache Tomcat - Apache Software Foundation https://cwiki.apache.org/confluence/ ...
- docker vim右键进入visual模式无法粘贴
右键不能粘贴,反而进入了visual模式, vim版本:version 8.0.707 修改方法: vim /usr/share/vim/vim80/defaults.vim 第70行 在mouse= ...
- python中pygame游戏打包为exe文件
pyinstaller打包游戏的方法: 1.在命令窗口安装pyinstaller ->pip install pyinstaller 2.查看安装的版本信息 pyinstaller -v 3.进 ...
- c# 并行循环支持 async
var bag = new ConcurrentBag<object>(); var tasks = myCollection.Select(async item => { // s ...