Rebuilding Roads
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 9105   Accepted: 4122

Description

The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, number 1..N) after the terrible earthquake last May. The cows didn't have time to rebuild any extra roads, so now there is exactly one way to get from any given barn to any other barn. Thus, the farm transportation system can be represented as a tree.

Farmer John wants to know how much damage another earthquake could do. He wants to know the minimum number of roads whose destruction would isolate a subtree of exactly P (1 <= P <= N) barns from the rest of the barns.

Input

* Line 1: Two integers, N and P

* Lines 2..N: N-1 lines, each with two integers I and J. Node I is node J's parent in the tree of roads.

Output

A single line containing the integer that is the minimum number of roads that need to be destroyed for a subtree of P nodes to be isolated. 

Sample Input

11 6
1 2
1 3
1 4
1 5
2 6
2 7
2 8
4 9
4 10
4 11

Sample Output

2

Hint

[A subtree with nodes (1, 2, 3, 6, 7, 8) will become isolated if roads 1-4 and 1-5 are destroyed.] 
 
题意:最小多少切割次数切割出一棵P节点的子树
思路:不要以为是切掉P个点...是切出
1 dp[i][j]节点i切成j的子树所需要的最小切数
2 有两种转移,第一种切断子树,需要+1,第二种合并子树
具体看代码,注意不要互相更新
错误5次:1 胡乱提交 2 互相更新 3 忘了非根子树要切
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=152;
const int inf=0x7ffff;
int dp[maxn][maxn];
int des[maxn];//中间缓存防止自身更新
int e[maxn][maxn];
int len[maxn];//建图
int lef[maxn];//子节点+自身个数
int n,p;
void dfs(int s){
lef[s]=1;//自身肯定算一个,子节点还没加上
dp[s][1]=0;//这个时候只有不切一种可能
if(len[s]==0){return ;}//没必要刻意 for(int i=0;i<len[s];i++){
int t=e[s][i];
dfs(t);
fill(des,des+n+1,inf);//初始化缓存
for(int k=1;k<=lef[s];k++){
des[k]=dp[s][k]+1;//切
}
for(int k=1;k<=lef[s];k++){
for(int j=1;j<=lef[t];j++){
des[k+j]=min(dp[s][k]+dp[t][j],des[k+j]);//不切
}
}
lef[s]+=lef[t];//加上这一枝
for(int k=1;k<=lef[s];k++){
dp[s][k]=des[k];//从缓存中取状态
}
dp[s][lef[s]]=0;//不需要
}
}
int main(){
scanf("%d%d",&n,&p);
memset(len,0,sizeof(len));
for(int i=1;i<=n;i++)fill(dp[i]+1,dp[i]+n+1,inf);
for(int i=2;i<=n;i++){
int f,t;
scanf("%d%d",&f,&t);
e[f][len[f]++]=t;
}
dfs(1);
int ans=dp[1][p];//1是根节点分离它不需要切
for(int i=2;i<=n;i++)ans=min(ans,dp[i][p]+1);//非根子树都要切
// printdp();
printf("%d\n",ans); return 0;
}

  

POJ 1947 Rebuilding Roads 树形dp 难度:2的更多相关文章

  1. POJ 1947 Rebuilding Roads 树形DP

    Rebuilding Roads   Description The cows have reconstructed Farmer John's farm, with its N barns (1 & ...

  2. DP Intro - poj 1947 Rebuilding Roads(树形DP)

    版权声明:本文为博主原创文章,未经博主允许不得转载. Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  3. [poj 1947] Rebuilding Roads 树形DP

    Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10653 Accepted: 4884 Des ...

  4. POJ 1947 Rebuilding Road(树形DP)

    Description The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, n ...

  5. POJ 1947 Rebuilding Roads (树dp + 背包思想)

    题目链接:http://poj.org/problem?id=1947 一共有n个节点,要求减去最少的边,行号剩下p个节点.问你去掉的最少边数. dp[u][j]表示u为子树根,且得到j个节点最少减去 ...

  6. 树形dp(poj 1947 Rebuilding Roads )

    题意: 有n个点组成一棵树,问至少要删除多少条边才能获得一棵有p个结点的子树? 思路: 设dp[i][k]为以i为根,生成节点数为k的子树,所需剪掉的边数. dp[i][1] = total(i.so ...

  7. POJ 1947 Rebuilding Roads

    树形DP..... Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8188 Accepted: ...

  8. POJ1947 - Rebuilding Roads(树形DP)

    题目大意 给定一棵n个结点的树,问最少需要删除多少条边使得某棵子树的结点个数为p 题解 很经典的树形DP~~~直接上方程吧 dp[u][j]=min(dp[u][j],dp[u][j-k]+dp[v] ...

  9. POJ 1947 Rebuilding Roads(树形DP)

    题目链接 题意 : 给你一棵树,问你至少断掉几条边能够得到有p个点的子树. 思路 : dp[i][j]代表的是以i为根的子树有j个节点.dp[u][i] = dp[u][j]+dp[son][i-j] ...

随机推荐

  1. FSMC(STM32)

    (一)FSMC:Flexible Static Memory Controller,可变(灵活)静态存储控制器 小容量产品是指闪存存储器容量在1 6K至32K 字节之间的STM32F101xx.STM ...

  2. mpvue小程序开发入门级指南

    报错指南 "Error: ERR_GET_SESSION_KEY {"code":5100,"message":"(-1)服务内部错误,请稍 ...

  3. win7 64位debug解决方法

    1.下载win 64位的DOSBox,如DOSBox0.74: 2.下载win 32 debug.exe,并复制到调用的目录,如d盘根目录d:\ 3.安装DOSBox,并运行:如下图: 4.键入命令: ...

  4. 浅入浅出JS中的eval及json

    声明: 首先声明一下,本人是JS新手,所以不敢说深入,只是把最近对eval的学习经验拿出来跟大家分享,如果您是高手可略去不看. 适合读者: 对JS中的eval一知半解,不知eval是如何把字符串转换为 ...

  5. LightOJ 1393 Crazy Calendar(博弈)题解

    题意:r*c方格中,每个格子有一定石子,每次移动每格任意数量石子,只能向下或者向右动一格,不能移动为败 思路:显然是Nim,到右下曼哈顿距离为偶数的不用管,因为先手动一下后手动一下最后移到右下后还是先 ...

  6. fread

    快速读入? 不知道 反正只是贴过来的 以后或许会用到? #define FI(n) FastIO::read(n) namespace FastIO { << ; ]; int bi = ...

  7. java 类构造器中加入有参构造器及调用顺序【思路】

    package com.ykmimi.new1; /** * * @author deadzq * */ public class AnyThing { public AnyThing() { thi ...

  8. FPGA 概述

    概述 verilog HDL Verilog HDL基本结构 1 Verilog HDL程序是由模块构成的.每个模块嵌套在module和endmodule声明语句中. 2 每个Verilog HDL源 ...

  9. Springboot统一参数验证方式

    Springboot统一验证方式 在提供http api 接口形式的服务中,通过都会传递参数为一个对象.我们需要对这个对象的各个字段进行校验.来判断是否为合法值. 传统的方式为自己获取每个字段的值,自 ...

  10. UVa 437 巴比伦塔

    https://vjudge.net/problem/UVA-437 这道题和HDU的Monkey and Banana完全一样. #include<iostream> #include& ...